Проверка сопротивления обмотки электродвигателя

Измерение сопротивления в электродвигателе

Измерение сопротивления в электродвигателе

Важной частью испытаний электродвигателя после ремонта или складского хранения являются измерение сопротивления изоляции и сопротивление обмоток постоянному току. Сопротивление изоляции производится для проверки отсутствия короткого замыкания и возможности подключения машины к сети. Сопротивление обмоток измеряется для проверки правильности намотки, отсутствия виткового замыкания и надёжности соединений.

Методы проверки изоляции

Перед подачей напряжения для предотвращения короткого замыкания необходимо проверить изоляцию между токоведущими частями и корпусом электромашины. В трёхфазных электродвигателях обмотки соединены между собой. Для проверки отсутствия замыкания между ними, при наличии возможности следует отключить обмотки друг от друга. Изоляция каждой из них проверяется относительно остальных катушек и корпуса машины. Проверка изоляции производится мегомметром. Для этого вывода к прибору подключаются на положение «мегаомы». Концы прикладываются к выводам и части корпуса, зачищенному от краски.

Информация! Вместо корпуса вывод можно приложить к валу электромашины.

Измерение производится вдвоём — один человек прикладывает вывода прибора к измеряемым элементам, а второй крутит ручку устройства в течение минуты, затем, не прекращая вращения, снимаются показания. При сомнительном результате измерения следует повторить. Провода и обмотки обладают электрической ёмкостью и во время измерения заряжаются от мегомметра, поэтому после завершения испытаний или перед повторной проверкой вывода прибора и измеряемые детали необходимо разрядить закорачиванием.

Измерение сопротивления обмоток

Измерение сопротивления обмоток производится постоянным током. Этот вид измерений производится для проверки правильности намотки и качества соединений.

Информация! Величина сопротивлений, за исключением обмоток параллельного возбуждения двигателей постоянного тока, составляет несколько Ом, а в электромашинах большой мощности менее 1 Ом

Измерения производятся измерительным мостом или цифровым омметром. При проведении измерений важно обеспечить надёжный контакт выводов прибора с клеммами электромашины. Перед началом измерений вывода измерительного прибора замыкаются между собой, и производится установка «0». В трехфазных машинах обмотки следует отключить друг от друга. При невозможности это сделать они измеряются попарно, через клеммы подключения. В коллекторных электродвигателях и машинах постоянного тока обмотки возбуждения разделены на две части и находятся по обе стороны ротора. Для проверки сопротивления их рассоединяют и измеряют по отдельности.

Температура электродвигателя

При изменении температуры сопротивление обмоток меняется, поэтому температура двигателя при измерении должна быть 20°С или сопротивление необходимо пересчитывать по специальным таблицам. Для измерения температуры используются встроенные или дополнительно устанавливаемые внутренние температурные датчики. Их количество зависит от мощности электромашины:

  • до 10кВт — 1шт;
  • 10-100кВт — 2шт;
  • 100кВт-1мВт — 3шт;
  • более 1мВт — 4шт.

Температурой аппарата считается среднее значение показаний. При измерении сопротивления двигателя, не работавшего длительное время, его температурой считается температура окружающей среды. При этом она не должна меняться в течение нескольких дней перед началом измерений больше, чем на 5°С. Измерения производят несколько раз с перерывом не менее 2 часов. Если результат меняется, то следует подождать до приобретения электромашиной температуры окружающей среды.

Измерения с помощью амперметра и вольтметра

Если измерительный мост или омметр отсутствуют, то допускается определить сопротивление обмоток методом измерения тока и напряжения:

  1. подключить параллельно обмотке вольтметр, а последовательно амперметр;
  2. подать в схему =5В;
  3. измерить ток и напряжение;
  4. по формуле R=U/I рассчитать сопротивление;
  5. повторить ещё два раза, меняя величину напряжения;
  6. рассчитать среднеарифметическое значение.

Важно! Если вместо постоянного использовать переменное напряжение, то можно обнаружить витковое замыкание между рядом расположенными витками.

Проверка целостности коллекторных электрических машин

Измерением сопротивления проверяется также исправность коллекторных машин переменного и постоянного тока. Делать это целесообразно стрелочным или цифровым омметром. Во время проверки показания прибора не должны меняться более чем на 10-15%. Измерения производятся между рядом расположенными пластинами коллектора или через щётки. Если при измерениях через щётки показания меняются, необходимо их снять и произвести измерения непосредственно на коллекторе.

Необходимая точность и результаты измерений

Точность и необходимый результат измерений определяется нормативными документами, такими, как ПУЭ, ПТЭЭР и другими, а также документацией к электродвигателю.

Необходимая точность при измерении сопротивления обмоток

Проводить измерения следует при температуре электромашины, равной температуре окружающей среде, до включения в работу. Разница между показаниями не должна превышать 2%, поэтому приборы, используемые для проверки должны обеспечивать необходимую точность:

  • до 1 Ом применяется двойной измерительный мост;
  • свыше 1 Ом — одинарный;
  • цифровой омметр необходимо переключить на соответствующий предел измерений.

Измерение изоляции

При проверке сопротивления изоляции температура значения не имеет, но мегомметр следует проверить до начала испытаний и после. Величина сопротивления зависит от мощности электромашины и определяется по формуле Rиз=Uном/(1000+0,1Рном), где:

  • Uном — напряжение сети;
  • Рном — мощность двигателя. На практике считается, что сопротивление изоляции статора должно быть не менее 1мОм, а в обмотках фазного ротора не должно быть короткого замыкания. При показаниях мегомметра ниже требуемых:
  • после перегрева электромашины она отправляется на ремонт;
  • после хранения или намокания аппарат разбирается и сушится, после чего производится повторная проверка. Инструменты, используемые для измерения сопротивления Для проведения измерений применяются различные приборы.

Мегомметр

Служит для измерения сопротивления изоляции. Электродвигатели с номинальным напряжением до 1кВт используются мегомметры 0,5 и 1кВт, высоковольтные аппараты проверяются мегомметрами 2,5кВт или специальными устройствами. Вывода плотно прижимаются к измеряемому объекту, и ручка прибора вращается равномерно, со скоростью 1,5-2 об/мин до тех пор, пока стрелка не остановится.

Внимание! На выводах мегомметра присутствует высокое напряжение — до 2,5кВт, в зависимости от конструкции, но очень маленький ток. Поэтому прикосновения к ним болезненные, но не опасные для жизни.

Измерительный мост и цифровой омметр

При измерении сопротивления обмоток используются измерительный мост или цифровой омметр. Измеряемые величины составляют несколько Ом, поэтому важно обеспечить надёжный контакт прибора и клемм электромашины.

Мультиметр

Для приблизительной оценки состояния электродвигателя можно использовать мультиметр. Он не обладает необходимой точностью измерений, но позволяет проверить целостность обмоток и отсутствие короткого замыкания.

Тщательная проверка сопротивлений обмоток и изоляции электродвигателей необходима после ремонта, длительного периода хранения и оценки возможности дальнейшей эксплуатации при перегреве.

Измерение сопротивления обмоток электродвигателей постоянному току

Цель проведения измерений сопротивления обмоток электродвигателей постоянному току – выявление дефектов (некачественных соединений, витковых замыканий), ошибок в схеме соединений, а также уточнение параметров, используемых при расчетах и наладке режимов, регуляторов и др.

Измерения, особенно у крупных электродвигателей, следует выполнять с особой тщательностью и высокой точностью. Сопротивление обмоток электродвигателей постоянному току измеряют либо с помощью амперметра и вольтметра, либо двойным мостом . Если сопротивление больше 1 Ома, то необходимая точность измерений достигается одинарным мостом .

У электродвигателей, имеющих только три вывода обмотки статора (соединение обмоток в звезду или треугольник выполнено внутри электродвигателя), сопротивление постоянному току измеряют между выводами попарно. Сопротивление отдельных фаз в этом случае определяется из следующих выражений:

1. Для соединения в звезду (рис. 1,а)

При одинаковых значениях измеренных сопротивлений:

2. Для соединения в треугольник (рис. 1,б)

При одинаковых значениях измеренных сопротивлений:

Схемы измерения сопротивления обмоток трёхфазных электродвигателей при соединении обмоток: а – в звезду; б – в треугольник

Рис. 1. Схемы измерения сопротивления обмоток трёхфазных электродвигателей при соединении обмоток: а – в звезду; б – в треугольник

При измерении сопротивления особое значение имеет правильное определение температуры обмотки. Для измерения температуры применяют как заложенные температурные индикаторы, так и встраиваемые термометры и температурные индикаторы, которые должны быть введены не позднее чем за 15 мин до начала измерения сопротивления.

Для измерения температуры обмоток электродвигателей мощностью до 10 кВт устанавливают один термометр или температурный индикатор, для электродвигателей мощностью до 100 кВт – не менее двух, для электродвигателей мощностью от 100 до 1000 кВт – не менее трех, для электродвигателей свыше 1000 кВт – не менее четырех.

В качестве температуры обмоток принимается среднее арифметическое измеренных значений. При измерении сопротивлений обмоток электродвигателя в практически холодном состоянии температура обмоток не должна отличаться от температуры окружающей среды более чем на ± 3 °С.

Если невозможно непосредственно измерить температуру обмоток, электродвигатель должен находиться в нерабочем состоянии до измерения сопротивления обмоток в течение времени, достаточного для того, чтобы все части электродвигателя практически приняли температуру окружающей среды. Изменение температуры окружающей среды за это время не должно быть более ± 5 °С. В качестве температуры обмоток электродвигателя при этом принимают температуру окружающей среды в момент измерения сопротивлений. Измерение сопротивления повторяют несколько раз.

Измерения с помощью амперметра и вольтметра выполняют три раза при различных значениях тока. При применении мостовых схем перед каждым измерением следует нарушать равновесие моста. Результаты измерений одного и того же сопротивления не должны отличаться от среднего более чем на 0,5 %, в качестве действительного сопротивления принимается среднее арифметическое результатов всех измерений, удовлетворяющих этому требованию.

Результаты измерений по отдельным фазам сравниваются между собой, а также с результатами предыдущих (в том числе заводских) измерений. Для сравнения результатов измерений, проведенных при различных температурах обмоток, измеренные значения приводят к одной температуре (обычно к 15 или 20 °С).

Пересчёт сопротивлений с одной температуры на другую может быть произведён по выражениям: (для алюминия):

где Rt1 и Rt2 – сопротивления обмоток при температурах и соответственно.

Проверка электродвигателей разного вида с помощью мультиметра

Повседневная жизнь человека неразрывно связана с электродвигателями различной конфигурации, на работе которых основано действие различных приборов и оборудования. Таким оборудованием мы пользуемся постоянно и достаточно часто возникают различные неполадки в их работе, что зачастую связано с неисправностью электродвигателя. Для того, чтобы привести прибор в работоспособное состояние нужно знать, каким образом прозвонить электродвигатель. Об этом будет рассказано в данной статье.

Проверка электродвигателей разного вида с помощью мультиметра

Какие электродвигатели можно проверить мультиметром

Если двигатель не имеет очевидных внешних повреждений, то есть вероятность того, что произошел внутренний обрыв цепи или произошло короткое замыкание. Но не все электродвигатели можно просто проверить на эти дефекты мультиметром.

Например, может возникнуть сложности в диагностике электродвигателей постоянного тока, так как их обмотка имеет практически нулевое сопротивление и его можно проверить только косвенным методом по специальной схеме: одновременно снимают показания с амперметра и вольтметра с вычислением результирующего значения сопротивления по закону Ома.

Таким образом проверяют все сопротивления обмоток якоря и замеряют значения между пластинами коллектора. Если сопротивления обмоток якоря различаются, то имеется неполадки, так как в исправной машине эти значения одинаковые. Разность в значениях сопротивления между соседними пластинами коллектора должна быть не больше 10%, тогда двигатель будет считаться исправным (но если в конструкции предусмотрена уравнительная обмотка, то это значение может достигать до 30%).

Электрические машины переменного тока разделяют на:

  • синхронные: имеющие обмотки статора, расположенные под одинаковым углом смещения между собой, что позволяет двигаться с частотой, синхронной скорости вращения приложенной силы;
  • асинхронные с короткозамкнутым ротором (одно- или трехфазные);
  • асинхронные с фазным ротором, имеющие трехфазную обмотку;
  • коллекторные.

Все эти типы двигателей доступны для диагностики с помощью измерительных приборов, в том числе с помощью мультиметров. В целом, двигатели переменного тока достаточно надежные машины и неисправности в них возникают достаточно редко, но все же такое случается.

Какие неисправности в электродвигателе позволяет выявить мультиметр

Достаточно часто для проверки электродвигателей переменного тока используется мультиметр – многофункциональный электронный измерительный прибор. Он имеется в наличии практически у каждого домашнего мастера и позволяет выявить некоторые виды неисправностей в электрических приборах, в том числе и в электродвигателях.

Проверка электродвигателей разного вида с помощью мультиметра

Самыми распространенными неисправностями, которые возникают в электрических машинах такого типа являются:

  • обрыв обмотки (ротора или статора); ;
  • межвитковое замыкание.

Рассмотрим каждую из этих проблем подробнее и разберем методы выявления таких неисправностей.

Проверка на обрыв или целостность обмотки

Обрыв обмотки достаточно распространенное явление при обнаружении неправильной работы электродвигателя. Обрыв в обмотке может случиться как в статоре, так и в роторе.

Если была оборвана одна фаза в обмотке, соединенной по схеме «звезда» – то ток в ней будет отсутствовать, а в других фазах значения тока будет завышено, двигатель при этом работать не будет. Также может быть обрыв параллельной ветви фазы, что приведет к перегреву исправной ветви фазы.

Проверка электродвигателей разного вида с помощью мультиметра

Если была оборвана одна фаза обмотки (между двумя проводниками), соединенной по схеме «треугольник» — то ток в двух других проводниках будет значительно меньше, чем в третьем проводнике.

Если возник обрыв в обмотке ротора, то будут происходить колебания тока с частотой, равной частоте скольжения и колебания напряжения, при этом проявится гудение и обороты двигателя будут снижены, также возникнет вибрация.

Эти причины указывают на неисправность, но выявить саму неисправность можно при помощи прозвонки и измерения сопротивления каждой обмотки электродвигателя.

В двигателях, рассчитанных на переменное напряжение 220 В, прозваниваются пусковая и рабочая обмотки. Значение сопротивления пусковой обмотки должно быть больше, чем рабочей в 1,5 раза.

В электродвигателях на 380 В, которые подключаются по схемам «звезда» или «треугольник» всю схему необходимо разобрать и проверить каждую обмотку по отдельности. Сопротивление каждой из обмоток такого электродвигателя должно быть одинаковым (с отклонением не более пяти процентов). Но при обрыве дисплей мультиметра будет показывать высокое значение сопротивления, которое стремится к бесконечности.

Также обмотки двигателя можно проверить с помощью функции мультиметра «прозвонка» . Такой способ позволяет быстро выявить обрыв в цепи, так как при этом будет отсутствовать звуковой сигнал, в исправной цепи мультиметр будет издавать звук, а также возможна и световая индикация.

Проверка на короткое замыкание

Также распространенной неисправностью в электродвигателях является короткое замыкание на корпус. Для выявления этой неисправности (или её отсутствия) совершают следующие действия:

  • устанавливаются значения измерения сопротивления мультиметром на максимум;
  • щупы соединяют между собой для проверки исправности измерительного прибора;
  • один щуп соединяют с корпусом электродвигателя;
  • второй щуп присоединяют поочередно к выводам каждой фазы;

Проверка электродвигателей разного вида с помощью мультиметра

Результатом таких действий при исправном двигателе будет высокое сопротивление (несколько сотен или тысяч мегаом). «Прозвонкой» мультиметра проверить пробой на корпус даже удобнее: нужно осуществить в режиме прозвонки все те же действия, описанные выше и наличие звукового сигнала будет означать нарушение в целостности изоляции обмоток и короткое замыкание на корпус. К слову сказать, данная неисправность не только негативно влияет на работу самого оборудования, но и является опасной для жизни и здоровья человека при отсутствии специальных защитных устройств.

Проверка на межвитковое замыкание

Ещё одним видов неисправностей является межвитковое замыкание – короткое замыкание между разными витками одной катушки двигателя. При такой неполадке мотор будет гудеть и заметно снизится его мощность.

Выявить такую неисправность можно несколькими способами. Например, можно воспользоваться токовыми клещами или мультиметром.

При диагностике с помощью токовых клещей измеряют значения тока каждой из фаз обмотки статора и если значение тока в одной из них будет завышено, то там и находится замыкание.

Проверка сопротивления обмотки электродвигателя

проверка электродвигателя

При поломке электродвигателя, бывает недостаточно просто осмотреть его, чтобы понять причину неисправности.
Постараемся использовать наиболее простые технические способы и минимум оборудования.

Механическая часть

Механическая часть электродвигателя, грубо говоря, состоит всего из двух элементов:

1. Ротор — подвижный, вращающий элемент, который приводит в движения вал двигателя.
2. Статор — корпус с обмотками в центре которого находится ротор.

Два этих элемента между собой не прикасаются и разделены только с помощью подшипников.

механическая часть электродвигателя

Проверка электродвигателя начинается с внешнего осмотра

Прежде всего двигатель осматривают на предмет любых заметных дефектов, это могут быть, например, сломанные монтажные отверстия и подставки, потемнение краски внутри электродвигателя что явно говорит о перегреве, наличие загрязнений или посторонних веществ попавших внутрь двигателя, любые сколы и трещины.

Проверка подшипников

Большинство неисправностей электродвигателей вызваны неисправностью его подшипников. Ротор должен свободно втащатся внутри статора, подшипники которые расположены с двух сторон вала, должны минимизировать трение.
Есть несколько типов подшипников использующихся в электродвигателях. Два самых популярных типа: латунные подшипники скольжения и шарикоподшипники. Многие из них имеют фитинги для смазки, в другие смазка заложена при производстве и они как-бы «не обслуживаемые».

Для проверки подшипников, прежде всего, необходимо снять напряжение с электродвигателя и попробовать вручную прокрутить ротор (вал) двигателя.
Для этого поместите электродвигатель на твердую поверхность и положите одну руку на верхнюю часть двигателя, проверните вал другой рукой. Внимательно наблюдайте, старайтесь почувствовать и услышать трение, царапающие звуки, неравномерность вращения ротора. Ротор должен вращаться спокойно, свободно и равномерно.
После этого проверяют продольный люфт ротора, попробуйте потянуть-потолкать ротор в статоре. Характерный небольшой люфт допустим, но не более 3 мм, чем люфт меньше тем лучше. При большом люфте и неисправностях подшипников, двигатель «шумит» и быстро перегревается.

проверка подшыпников

Часто проверить вращение ротора бывает проблематично из-за подключенного привода. Например, ротор двигателя исправного пылесоса довольно легко раскрутить одним пальцем. А чтоб провернуть ротор рабочего перфоратора, придется приложить усилие. Прокрутить вал двигателя, подключенного через червячный редуктор, вообще не получится из-за конструктивных особенностей этого механизма.
По этому проверять подшипники и легкость вращения ротора нужно только при отключенном приводе.

Причиной затрудненного движения ротора может быть отсутствие смазки в подшипнике, загустение солидола или попадание грязи в полость шариков, внутри самого подшипника.

Нездоровый шум во время работы электродвигателя создается неисправными, разбитыми подшипниками с повышенным люфтом. Для того чтоб убедится в этом достаточно пошатать ротор относительно стационарной части, создавая переменные нагрузки в вертикальной плоскости, и попробовать вставлять и вытаскивать его вдоль оси.

Электрическая часть электродвигателя

В зависимости от того, двигатель для постоянного или переменного тока, асинхронный или синхронный, отличается и его конструкция электрической части, но общие принципы работы, основанные на воздействии вращающегося электромагнитного поля статора на поле ротора который передает вращение (валу) приводу.

В двигателях постоянного тока магнитное поле статора создается не постоянными магнитами, а двумя электромагнитами, собранными на специальных сердечниках — магнитопроводах, вокруг которых расположены катушки с обмотками, а магнитное поле ротора создается током, проходящим через щетки коллекторного узла по обмотке, уложенной в пазы якоря.
В асинхронных двигателях переменного тока ротор выполнен в виде короткозамкнутой обмотки в которую не подается ток.

В коллекторных электродвигателях используется схема передачи тока от стационарной части на вращающиеся детали с помощью щеткодержателя.

Поскольку магнитопровод изготавливается из пластин специальных сталей, собранных с высокой надежностью, то поломки таких элементов происходят очень редко и под воздействием агрессивных условий работы или запредельных механических нагрузок на корпус. Потому проверять их магнитные потоки не приходится и основное внимание прикладывается состоянию электрообмоток.

Проверка щеточного узла

Графитовые пластины щеток должны создавать минимальное переходное сопротивление для нормальной работы двигателя, они должны быть чистыми и хорошо прилегать к коллектору.

Электродвигатель который много работал с серьезными нагрузками, как правило имеет загрязненные пластины на коллекторе с изрядно набитыми в пазах пластин, графитовыми стружками, что довольно сильно ухудшает изоляцию между пластинами.

Щетки усилием пружин прижимаются к пластинам коллекторного барабана. В процессе работы графит истирается а его стержень изнашивается по длине и прижимная сила пружин уменьшается, а это в свою очередь приводит к ослаблению контактного давления и увеличению переходного электрического сопротивление, что вызывает искрение в коллекторе. Начинается повышенный износ щеток и медных пластин коллектора.

Щеточный механизм осматривают на загрязненность, на выработку самых щеток, на прижимную силу пружин механизма, а также на предмет искрения в процессе работы.

проверка щеточно-колекторного механизма

Загрязнения убираются мягкой тряпочкой, смоченной спиртом. Зазоры (полости) между пластинами очищаются с помощью зубочистки. Щетки притирают мелкозернистой наждачной шкуркой.
Если на коллекторе имеются выбоины или выгоревшие участки, то его подвергают механической обработке и полировке до нужного уровня.

Проверка обмоток на обрыв или короткое замыкание

проверка обмоток на обрыв или короткое замыкание

Проверка на короткое замыкание на корпус

Проверка производится с помощью мультиметра в режиме сопротивления. Зацепив один щуп тестера на корпус, поочередно прикасаются вторым щупом к выводам обмоток электродвигателя. В исправном электродвигателе сопротивление должно быть бесконечным.

проверка электродвигателя на кз на корпус

Проверка изоляции обмоток относительно корпуса

Для нахождения нарушений диэлектрических свойств изоляции относительно статора и ротора применяют специальный прибор — мегомметр. Большинство бытовых мультиметров прекрасно справляются с замером сопротивления до 200МОм и хорошо подойдут для етой цели, но недостатком мультиметров есть низкое напряжение замера сопротивления, оно как правило не больше 10 вольт, а напряжение эксплуатации обмоток намного больше.
Но все же если не удалось найти «профессиональный прибор» замер сделаем тестером. Прибор выставляем в максимальное сопротивление (200МОм), один щуп фиксируем на корпусе двигателя или на заземляющем винте, обеспечив надежный контакт с металлом, а вторым поочередно, не прикасаясь руками, прижимаем щуп к контактам обмоток. Следует обеспечить надежную изоляцию щупов от рук и тела, так как измерения будут неверны.
Чем больше сопротивление тем лучше, иногда оно может составлять всего 100 МОм и ето может быть приемлемо.

проверка сопротивления изоляции обмоток электродвигателя

Иногда в коллекторных двигателях графитовая пыль может «набиваться» между щеткодержателем и корпусом двигателя и можно будет увидеть куда меньшие показатели сопротивления, здесь следует обратить внимание не только на обмотки но и на потенциальные места «пробоя».

Проверка пускового конденсатора

Проверяют конденсатор тестером или же простым омметром.
Прикоснитесь щупами к выводам конденсатора, сопротивление должно начинаться с низких показателей и постепенно увеличиваться, так как небольшое напряжение, подающееся от батареек омметра, постепенно заряжает конденсатор. Если конденсатор остается короткозамкнутым или сопротивление не растет, то, вероятно, проблема с конденсатором, его необходимо заменить.

Нормальное сопротивление обмотки электродвигателя. Проверка мегомметром сопротивления изоляции двигателя

Измерение сопротивления производится механическим или электронным мегомметром.

Важно! Проверка изоляции двигателей до 380В выполняется прибором напряжением 500 вольт, а от 0,4 до 1 кВ аппаратом 1000В.

Перед проверкой сопротивления изоляции производится осмотр электромашины на отсутствие повреждений корпуса. Мокрый электродвигатель перед испытанием необходимо просушить. Все обмотки желательно отключить друг от друга для проверки изоляции между ними.

Порядок измерения сопротивления изоляции:

  1. подключить вывода или установить переключатель в положение «мегаомы»;
  2. проверить мегомметр замыканием концов между собой и проведением кратковременного измерения;
  3. результат должен быть около «0»;
  4. присоединить один из проводов к испытуемой катушке, а другой к очищенному от краски месту корпуса или другой обмотке;
  5. в течении 15-60 секунд вращать ручку прибора с частотой 120 оборотов в минуту;
  6. не прекращая вращения рукоятки проверить показания прибора.

Обмотка и корпус или две обмотки с изоляцией между ними представляют собой конденсатор. При измерении этот конденсатор заряжается до напряжения мегомметра — 500 или 1000 вольт. Поэтому клеммы электромашины и вывода прибора после проверки необходимо закоротить между собой.

Проверка межвитковой изоляции обмоток

Этот вид испытаний проводится для проверки изоляции между витками катушек асинхронных электромашин.

Для этого после разгона двигатель с короткозамкнутым ротором, вращающийся на холостом ходу, подключается на повышенное напряжение. Это напряжение на 30% выше номинального, а время работы в таких условиях — 3 минуты. Включение машины производится через амперметры, установленные на каждой фазе. После испытаний напряжение уменьшается до номинального и аппарат выключается.

Важно! Повышение и понижение напряжения производится плавно, при помощи регулируемого автотрансформатора или электронного блока питания.

При появлении шума, стуков, дыма или «плавающих» показаний амперметров, электродвигатель отключается и отправляется на ремонт.

Испытания электромашины с фазным ротором проводятся в заторможенном состоянии при отключенном роторе.

Испытание изоляции повышенным напряжением переменного тока

Такая проверка проводится при помощи трансформатора, имеющего плавную регулировку напряжения со стороны вторичной обмотки. В схеме испытательного прибора также предусматривается автоматический выключатель с величиной уставки максимальной защиты, достаточной для отключения установки в аварийных ситуациях. Вторичная обмотка подключается к обмоткам электромашины и корпусу.

Продолжительность испытаний составляет 1 минута при проверке изоляции между обмотками и корпусом и 5 минут при испытании изоляции между обмотками. Для проведения межобмоточной проверки напряжение подаётся на одну из обмоток, а остальные присоединяются к корпусу.

Напряжение поднимается и опускается плавно, в течение 10 секунд со значения 50%Uном до 200%Uном.

Проверка электродвигателя внешним осмотром

Полноценный осмотр

можно провести только после разборки электродвигателя, но сразу не спешите разбирать.

Все работы выполняются только после отключения

электропитания, проверки его отсутствия на электродвигателе и принятия мер по предотвращению его самопроизвольного или ошибочного включения. Если устройство включается в розетку, тогда просто достаточно достать вилку из нее.

Если в схеме есть конденсаторы

, тогда их выводы необходимо разрядить.

Проверьте перед началом разборки:

  1. Люфт в подшипниках.
    Как проверить и заменить подшипники читайте в .
  2. Проверьте покрытие краски
    на корпусе. Выгоревшая или отлущиваяся местами краска свидетельствует о нагревании двигателя в этих местах. Особенно обратите внимание на места расположения подшипников.
  3. Проверьте лапы
    крепления электродвигателя и вал вместе его соединения с механизмом. Трещины или отломанные лапы необходимо приварить.

, у мотора от старой стиральной машины есть три вывода. Самое большое сопротивление будет между двумя точками, включающей в себя 2 обмотки, например 50 Ом. Если взять оставшейся третий конец, то это и будет общий конец. Если замерить между ним и 2 концом пусковой обмотки- получите величину около 30-35 Ом, а если между ним и 2 концом рабочей- около 15 Ом.

В двигателях на 380 Вольт,

подключенных по схеме необходимо будет разобрать схему и прозвонить отдельно каждую из трех обмоток. У них сопротивление должно быть одинаковым от 2 до 15 Ом с отклонениями не более 5 процентов.

Обязательно необходимо прозвонить

все обмотки между собой и на корпус. Если сопротивление не велико до бесконечности, значит есть пробой обмоток между собой или на корпус. Такие двигатели необходимо сдать в перемотку обмоток.

Как проверить сопротивление изоляции обмоток электродвигателя

К сожалению, мультиметром не проверить

величину сопротивления изоляции обмоток электромотора для этого необходим мегомметр на 1000 Вольт с отдельным источником питания. Прибор дорогой, но он есть у каждого электрика на работе, которому приходится подключать или ремонтировать электродвигатели.

При измерении

один провод от мегомметра присоединяют к корпусу в неокрашенном месте, а второй по очереди к каждому выводу обмотки. После этого измерьте сопротивление изоляции между всеми обмотками. При величине менее 0.5 Мегома- двигатель необходимо просушить.

Будьте внимательны

, во избежание поражения электрическим током не прикасайтесь к измерительным зажимам во время проведения измерений.

Все измерения проводятся

только на обесточенном оборудовании и по продолжительности не менее 2-3 минут.

Как найти межвитковое замыкание

Наиболее сложным является поиск межвиткового замыкания

, при котором замыкается между собой лишь часть витков одной обмотки. Не всегда выявляется при внешнем осмотре, поэтому для этих целей применяется для двигателей на 380 Вольт- измеритель индуктивности. У всех трех обмоток должно быть одинаковое значение. При межвитковом замыкании у поврежденной обмотки индуктивность будет минимальной.

Когда Я был на практике 16 лет назад на заводе, электрики для поиска межвитковых замыканий у асинхронного мотора мощностью 10 Киловатт использовали шарик из подшипника диаметром около 10 миллиметров. Они вынимали ротор и подключали 3 фазы через 3 понижающих трансформатора на обмотки статора. Если все в порядке шарик движется по кругу статора, а при наличии межвиткового замыкания он примагничивается к месту его возникновения. Проверка должна быть

кратковременной и будьте аккуратны шарик может вылететь!

Я уже давно работаю электриком и проверяю на межвитковое замыкание, если только двигатель на 380 В начинает сильно греться после 15-30 минут работы. Но перед разборкой, на включенном моторе проверяю величину потребляемого им тока на всех трех фазах. Она должна быть одинаковой с небольшой поправкой на погрешности измерений.

Модификации электродвигателей друг с другом различаются, равно как и их дефекты. Не каждая неисправность может быть диагностирована с помощью тестера, но в большинстве случаев – вполне возможно.

Ремонт начинают со зрительного осмотра: есть ли повреждённые части, не залит ли водой электродвигатель, не появился ли запах горелой изоляции и так далее. Обмотка в асинхронном двигателе может сгореть из-за короткого замыкания между двумя соседними витками. Агрегат перегревается из-за перегрузок, возникновения больших токов.

Нередко обгоревшие обмотки видны при визуальном осмотре, и в этом случае любые измерения будут лишними. Когда никаких шансов на исправление нет, нужно удалить и заменить обмотки на новые. Иногда требуется более тщательно проверить электродвигатель.

Для начала необходимо изучить конфигурацию двигателя, например, какие обмотки используются. Все вращающиеся машины имеют две части: статор и ротор.

В электродвигателях постоянного тока имеются:

  • обмотка возбуждения, имеющая важное значение для производства магнитного поля. Она позволяет преобразовать энергию из механической в электрическую и наоборот;
  • обмотка якоря, несущая нагрузку току и регулирующая переменный ток для уменьшения вихревых потерь.

Двигатель переменного тока, обычно состоит из двух частей:

  1. статора, имеющего катушку для создания вращающегося магнитного поля;
  2. ротора, прикрепленного к выходному валу и предназначенного для производства второго вращающегося магнитного поля.



Нормы сопротивления изоляции электрических машин

В ПУЭ (правилах устройства электроустановок) регламентируется сопротивление изоляции электродвигателей в зависимости от конструкции и мощности аппарата.

Допустимое сопротивление при испытании изоляции асинхронных электромашин

При измерении изоляции асинхронных двигателей соединение обмоток статора «звезда» или «треугольник» необходимо разобрать и проверить каждую из катушек относительно корпуса и между собой. Испытания проводятся при температуре машины 10-30°С.

Сопротивление изоляции должно быть:

  • в статоре не менее 0,5мОм;
  • в фазном роторе не менее 0,2мОм;
  • минимальное сопротивление изоляции термодатчиков не нормируется.

Для того чтобы не использовать справочник, обычно допустимое сопротивление считается 1мОм. Меньшие значения говорят о незначительных нарушениях, которые со временем приведут к выходу электромашины из строя.

Важно! Для того чтобы избежать такой ситуации аппарат целесообразно отправить на специализированное предприятие для проведения среднего ремонта.

Изоляция двигателей постоянного тока

Для проверки изоляции в машинах постоянного тока необходимо вынуть щётки из щёткодержателей или подложить под них изоляционный материал.

Измерение проводится между разными частями схемы электромашины:

  • обмотками возбуждения и коллектором якоря;
  • щёткодержателем и корпусом аппарата;
  • коллектором якоря и корпусом;
  • обмотками возбуждения и корпусом электромашины.

Важно! Если есть возможность, то катушки обмотки возбуждения отключаются друг от друга и проверяются по отдельности.

Минимально допустимое сопротивление изоляции зависит от температуры и номинального напряжения электромашины. При 20°С она составляет:

  • 220В — 1,85мОм;
  • 440В — 3,7мОм;
  • 660В — 5,45мОм.

Кроме обмоток и якоря измеряется сопротивление бандажей обмоток возбуждения и якоря. Оно проверяется между самим бандажом и корпусом, а также закрепляемой им обмоткой. Оно не должно быть менее 0,5мОм.

Приемо-сдаточные испытания электродвигателей — первый этап

Оценивая состояние двигателя и его готовность к работе, в первую очередь проводят внешний осмотр агрегата, начиная со щитка. Предметом проверки являются такие параметры, как:

  • целостность комплектующих (всех, осмотр которых не требует демонтажа);
  • правильность их установки;
  • соответствие паспортных данных проектным.

Современная методика испытаний электродвигателей переменного тока позволяет определить, необходима ли сушка изоляции обмоток. На соответствие нормам проверяют:

  • уровень сопротивления изоляции;
  • коэффициент абсорбции;
  • коэффициент нелинейности.

Причины низкого сопротивления

Есть несколько причин низкого сопротивления изоляции.

Перегрев электромашины

Эта ситуация возникает из-за перегрузки электромашины или обрыва одной из фаз в трёхфазных электродвигателях. Устранить эту проблему в условиях мастерской невозможно и аппарат приходится отправлять для замены обмоток в специализированное предприятие.

Предотвратить такую неисправность помогают устройства защиты:

  • тепловое реле отключает электромашину при перегрузке;
  • реле напряжения отключает установку при отсутствии одной из фаз или пониженном напряжении сети.

Важно! Для лучшей защиты внутри электродвигателей встраиваются датчики температуры. В новых машинах они устанавливаются при изготовлении, а в старых такие приборы можно поставить при плановом или капитальном ремонте.

Как прозвонить электродвигатель мультиметром

Асинхронный трехфазный двигатель

Асинхронный трехфазный двигатель с короткозамкнутым ротором

— асинхронный трехфазный двигатель с короткозамкнутым ротором. Три обмотки двигателя уложены в пазы статора;
— асинхронный однофазный двигатель с короткозамкнутым ротором. В основном его применение находит в бытовой электротехнике в пылесосах, стиральных машинах, вытяжках, вентиляторах, кондиционерах;
— коллекторные двигатели постоянного тока установлены в электрооборудовании автомобиля (вентиляторы, стеклоподъемники, насосы);
— коллекторный двигатель переменного тока находит применение в электрических инструментах. К таким инструментам относятся электродрели, болгарки, перфораторы, мясорубки;
— асинхронный двигатель с фазным ротором имеет довольно мощный пусковой момент. Поэтому такие двигатели устанавливаются в приводах подъемников, кранах, лифтах.

Измерение сопротивления изоляции обмоток

Для проверки двигателя на сопротивление изоляции, электрики используют мегомметр с испытательным напряжением 500 В или 1000 В. Этим прибором измеряют сопротивление изоляции обмоток двигателей рассчитанных на рабочее напряжение 220 В или 380 В.

Для электродвигателей с номинальным напряжением 12В, 24в используют тестер, так как изоляция этих обмоток не рассчитана на испытание под высоким напряжением 500 В мегомметра. Обычно в паспорте на электродвигатель указывается испытательное напряжение при измерении сопротивлений изоляции катушек.

Замыкание на корпус мегомметром

Сопротивление изоляции обычно проверяется мегомметром

Перед измерением сопротивления изоляции нужно ознакомиться со схемой подключения электродвигателя, так как некоторые соединения звездой обмоток бывают подключены средней точкой к корпусу двигателя. Если обмотки имеет одну или несколько точек соединений, “треугольник”, “звезда”, однофазный двигатель с пусковой и рабочей обмоткой, тогда изоляция проверяется между любой точкой соединения обмоток и корпусом.

Если сопротивление изоляции значительно меньше 20 Мом, обмотки разъединяют и проверяют каждую отдельно. Для целого двигателя сопротивление изоляции между катушками и металлическим корпусом должно быть не ниже 20 Мом. Если электродвигатель работал или хранился в сырых условиях, тогда сопротивление изоляции может быть ниже 20 Мом.

Тогда электродвигатель разбирают и просушивают несколько часов накальной лампой 60 Вт, помещенной в корпус статора. При измерении сопротивления изоляции мультиметром, выставляют предел измерений на максимальное сопротивление, на мегомы.

Как прозвонить электродвигатель на обрыв обмоток и межвитковое замыкание

Межвитковое замыкание в обмотках можно проверить мультиметром на омах. Если имеется три обмотки, тогда достаточно сравнить их сопротивление. Отличие в сопротивлении одной обмотки указывает на межвитковое замыкание. Межвитковое замыкание однофазных двигателей определить труднее, так как имеются только разные обмотки — это пусковая и рабочая обмотка, которая имеет меньшее сопротивление.

Сравнивать их нет возможности. Выявить межвитковое замыкание обмоток трехфазных и однофазных двигателей можно измерительными клещами, сравнивая токи обмоток с их паспортными данными. При межвитковом замыкании в обмотках, их номинальный ток возрастает, а величина пускового момента уменьшается, двигатель с трудом запускается или совсем не запускается, а только гудит.

Проверка электродвигателя

Проверка электродвигателя на обрыв и межвитковое замыкание обмоток

Измерять сопротивление обмоток мощных электродвигателей мультиметром не получится, потому что сечение проводов велико и сопротивление обмоток находится в пределах десятых долей ома. Определить разницу сопротивлений, при таких значениях мультиметром, не представляется возможным. В этом случае исправность электродвигателя лучше проверять токоизмерительными клещами.

Если нет возможности подключить электродвигатель к сети, сопротивление обмоток можно найти косвенным методом. Собирают последовательную цепь из аккумулятора на напряжение 12В с реостатом на 20 ом. С помощью мультиметра (амперметра) выставляют реостатом ток 0,5 — 1 А. Собранное приспособление подключают к проверяемой обмотке и замеряют падение напряжения.

Прозвонка электродвигателя на обрыв

Прозвонка электродвигателя на обрыв и сопротивление изоляции

Меньшее падение напряжения на катушке укажет на межвитковое замыкание. Если требуется знать сопротивление обмотки, его рассчитывают по формуле R = U/I. Неисправность электродвигателя можно также определить визуально, на разобранном статоре или по запаху горелой изоляции. Если визуально обнаружено место обрыва, его можно устранить, припаять перемычку, хорошо изолировать и уложить.

Замер сопротивлений обмоток трехфазных двигателей проводят без снятия перемычек на схемах соединений обмоток “звезда” и “треугольник”. Сопротивление катушек коллекторных электродвигаталей постоянного и переменного напряжения также проверяют мультиметром. А при большой их мощности проверка ведется с помощью приспособления аккумулятор — реостат, как указано выше.

Сопротивление обмоток этих двигателей проверяют отдельно на статоре и роторе. На роторе лучше проверять сопротивление непосредственно на щетках, прокручивая ротор. В этом случае можно определить неплотное прилегание щеток к ламелям ротора. Устраняют нагар и неровности на ламелях коллектора, их шлифовкой на токарном станке.

Вручную эту операцию сделать трудно, можно не устранить эту неисправность, а искрение щеток только увеличится. Пазы между ламелями также прочищают. В обмотках электродвигателей может быть установлен плавкий предохранитель, тепловое реле. При наличии теплового реле проверяют его контакты и при необходимости чистят их.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: