Стабилизированный блок электронного зажигания

Блок электронного зажигания со стабилизатором переменного тока

О преимуществе электронной системы зажигания, по сравнению с классической — механической, сегодня говорить не приходится, это знает каждый мотолюбитель.

Облегчается запуск двигателя, возрастает средняя мощность, снижается на 10. 15% расход топлива, не подгорают контакты, приходится меньше уделять внимания установке точного зазора.

Мною разработана и испытана система электронного зажигания для мопедов марки “Simson”, “Riga 16” и им подобных, на которых установлена штатная механическая система зажигания.

Принципиальная схема

Блок электронного зажигания состоит из стабилизатора переменного напряжения (рис. 1), собранного на тиристоре VS1 и стабилизирующем каскаде, управляющем работой тиристора.

Схема стабилизатора переменного напряжения

Рис. 1. Схема стабилизатора переменного напряжения.

Особенности наладки тиристорного стабилизатора заключаются в установке выходного переменного напряжения в пределах 11,5. 12,5 В при подключенной активной нагрузке (автомобильная лампа накаливания 12 В/21 Вт, 12 В/35 Вт).

Это достигается подбором стабилитрона VD5 типа Д814В и подстройкой выходного напряжения в заданном диапазоне резистором R2.

При замене стабилитрона VD5 на КС147, Д818 и др. можно получить ряд напряжений: 6, 9, 12, 18, 24 и т.д. При использовании тиристоров серий Т112, Т125, Т142 повышается нагрузочная токовая характеристика блока.

Конденсатор С1 — морозостойкий типа ЭТО, К53-1, К53-4, К53-14 с рабочим напряжением не менее 30 В. Тиристор VS1 любой из серий КУ-202, Т106, Т112 и др. с прямым током 10. 15 А.

Блок тиристорного зажигания (рис. 2) состоит из диодно-транзисторного ключа, повышающего трансформатора мощностью 7. 12 Вт с коэффициентом трансформации 15.. .18, выпрямителя, тиристорного генератора, штатной катушки зажигания и прерывателя.

Схема блока тиристорного зажигания

Рис. 2. Схема блока тиристорного зажигания.

Детали

В качестве повышающего трансформатора можно использовать любой сетевой трансформатор мощностью до 12 Вт с готовой первичной обмоткой.

При самостоятельном изготовлении трансформатора обмотка W, должна содержать 4500.. .4000 витков провода ПЭЛ диаметром 0,12 мм, W2 — 270. 300 витков провода ПЭЛ диаметром 0,3. 0,4 мм. Готовую катушку трансформатора необходимо обязательно пропитать влагостойким лаком.

Налаживание

Налаживание блока сводится к подбору резисторов R4 и R5. Резистором R4 устанавливают единичный искровой разряд. Резистором R5 — максимальные обороты двигателя.

Диод VD8 типа КД105, КД202Р, Д237 подавляет паразитные колебания в колебательном контуре, образованном емкостью конденсатора С3 и индуктивностью первичной обмотки катушки зажигания.

Стабилитрон VD3 типа КС133, КС139, КС433 и др. с напряжением стабилизации 3,3. 3,9 В, желательно в металлическом корпусе, предотвращает ложные срабатывания тиристора от перенапряжения. Правильно собранный блок начинает работать сразу.

Для этого собирают электрическую схему, состоящую из понижающего трансформатора с выходным напряжением 15. 24 В и током нагрузки до 1 А, катушки зажигания, свечи зажигания с искровым промежутком 1. 1,2 мм, прерывателя (для этой цели можно использовать микровыключатель).

Подав переменное напряжение на тиристорный блок зажигания, убеждаются в кратности искрового разряда на свече. Если этого не происходит, резистор R5 заменяют на цепочку, состоящую из постоянного (5,1 . 7,5 кОм) и переменного (22. 33 кОм) резисторов, которыми устанавливают необходимую кратность прерыва-ние/искровой разряд.

Данная схема не критична к комплектующим радиодеталям,главное,чтобы они были исправны и выдерживали приложенное к ним напряжение. После наладки электронной системы зажигания приступают к переделке штатного генератора переменного тока, установленного на двигателе вашего мопеда.

Для этого снимается катушка генератора, питающая систему зажигания. Провод катушки, присоединенный к “массе”, необходимо отпаять, удлинить и подсоединить к стабилизатору переменного тока.

Для надежного запуска двигателя в катушке генератора необходимо домотать 80. 100 витков провода. Зазор между контактами прерывателя не критичен и может находиться в пределах 0,3. 0,6 мм, на свече зажигания — 0,8. 1,0 мм.

Установленный блок сбоев в работе не имел. Отпала необходимость проводить постоянную профилактику прерывателя. Конденсатор штатной системы зажигания необходимо обязательно отсоединить от прерывателя, так как в данной электрической схеме он не используется.

М. Красуцкий. РМ-05-17.

Примечание: автор статьи не указал на тип применяемого транзистора, в качестве VT1 можно установить один из мощных ключевых транзисторов общего назначения, например — КТ837 (ток коллектора 7,5А).

Тиристорное зажигание (модификации схемы Сверчкова)

Для любого классического карбюраторного двигателя давным-давно есть НАДЕЖНЕЙШАЯ схема электронного зажигания Яковлева-Сверчкова.
(Журнал "Радио", номер 7, 1999г.)
www.chipinfo.ru/literatur…/radio/199907/p38_40.html
.
— преобразователь напряжения на блокинг-генераторе, заряжающий накопительный конденсатор до высокого напряжения и по сигналу от прерывателя (или датчика холла — если добавить ключевой каскад на одном-двух транзисторах) — и по сигшналу от прерывателя (датчика холла) — отпирающий силовой тиристор, который разряжает высоковольтный конденсатор (1мкф 600в) через катушку зажигания (бобину).

— Таким образом в этой схеме энергия накапливается не в магнитном поле, создаваемом ДОСТАТОЧНО СИЛЬНЫМ ТОКОМ (3-5 ампер) в первичной обмотке катушки зажигания — а в заряженном до высокого напряжения накопительном конденсаторе. Это приводит к тому, что при разрядке конденсатора ТОК через первичную обмотку катушки зажигания(КЗ) протекает ничтожное время (милллисекунды). Таким образом, КЗ в этой схеме используется в режиме ИМПУЛЬСНОГО ТРАНСФОРМАТОРА, что приводит к тому, что тепло в катушке зажигания практически НЕ ВЫДЕЛЯЕТСЯ и она всегда остается ХОЛОДНОЙ — а значит и практически не изнашивается (у меня до сих пор стоит "родная" бобина 1959 г выпуска 8-)!
— Преобразователь высокого напряжения собран по черезвычайно простой и черезвычайно энерго-эффективной схеме (патент СССР на имя Сверчкова — номера не помню). Достаточно сказать, что на холостом ходу от 12-вольт аккомулятора эта схема потребляет СРЕДНИЙ ток 0.05 — 0.06 ампера. И лишь на максимальных оборотах двигателя (искрообразование — 200 раз в сек) схема начинает кушать положенный ей 2.5-3 ампера (природу не обманешь 8-).
— более того — данная схема остается работоспособной при понижении бортового напряжения до 5-6 вольт (правда при таком напряжении питания (бортовое напряжение) средний потребляемый ток на Хол.Ходу будет уже 0.3 ампера). А это значит, что при наличии "кривого стартера" машину с севшим аккомулятором — можно завести ПРОСТО ОТ БАТАРЕЙКИ ! (4-5 последовательно соединенных гальванических элементов типа 373 поп 1.5 вольта каждый — подавать напряжение через диод непосредственно на клемму питания блока зажигания, отключив его от бортовой сети — это чтобы не разряжать батарейку через сдохший аккомулятор и обмотку возбуждения генератора. А когда двигатель заведется — подключить к клемме питания блока зажигания провод от боровой сети — где генератор начал вырабатывать ток "на остаточной намагниченности ротора" и только после этого — отключить диод батарейки от клеммы питания блока зажигания)
— более того схема стабилизации высокого напряжения — ПЕРЕКОМПЕНСИРОВАНА ! Это означает, что при падении питающего напряжения схемы (стартерный ток "просаживает" аккомулятор) — высокое напряжение на накопительном конденсаторе не падает — А РАСТЕТ ! (от 350 при 13.8 вольта до 450-500 при 6-7 вольтах). Энергия заряженного конденсатора КВАДРАТИЧНО зависит от напряжения заряда конденстатора. Это приводит к тому — что при питании от схемы от 6-7 вольт искра между концом провода и плоскостю(массой) — имеет длину не менее 3-х сантиметров !
— эта схема работает от очень низкого тока через контакты прерывателя — и ток через них выбирается из соображения их самоочищения — т.е. около 0.3 А
.
Ну а недостатоков у данного устройства два… или даже три.
1) его надо делать самому — и самостоятельно мотать трансформатор блокинг-генератора. Намотать его можно на сердечнике (железе) от любого китайского сетевого адаптера с площадью центрального керна около 1.5 кв.см. или мощностью порядка 15 ватт (т.е. если произведение максимального рабочего тока[ампер] на максимальное рабочее напряжение[вольт] данного адаптера — даст примерно 15[ватт] — ну например 12 вольт 1 ампер, или 5 вольт 2.5-3 ампера).
2) Блок слегка "шумит" в звуковом диапазоне частот — сердечник трансформатора преобразователя напряжения на основе блокинг-генератора при работе издает характерный акустический шум. Каждая искра в катушке зажигания отмечается негромким щелчком. Но если размещать блок зажигания под капотом (в хорошо обдуваемом месте!) — то в кабине шум слышен не будет. Но например у меня — он стоит в кабине 8-). И если включишь зажигание — то блок сразу начинает потрескивать, поддерживая накопительную емкость в заряженном состоянии. Прислушаешься — потрескивает — ну значт аккомулятор — не сдох — с искрой проблем не будет !
8-)
3) Если для вас существенен уровень электромагнитных помех (слушаете радиоприемник) — то собирать блок надо обязательно в металлическом корпусе и желательно немагнитном (аллюминиевом) — Если поместить блок в железный-т.е. ферромагнитный(!) корпус — он может издавать при работе блокинг генератора дополнительный акустический шум. Соединять блок с первичной обмоткой катушки зажигания надо будет проводами минимальной длины, одетыми в экранирующую оплетку, которую соединить на массу автомобиля. .ну и (есс-но!) — экранировать высоковольтные провода системы зажигания.
.
По нижеуказанной ссылке можно найти и схему и описание конструкции.
www.chipinfo.ru/literatur…/radio/199907/p38_40.html

Эксплуатирую эту схему в течении 20 лет. Полет нормальный. Сначала была собрана схема Сверчкова еще на П210Э. Потом собрал по схеме Яковлева, модифицированной под датчик Холла. Ток нагрузки выходного транзистора датчика выбран — 0.005 ампера (трех-четырехкратный технологический запас отностительно 0.02 амера)
lib.chipdip.ru/204/DOC000204503.pdf
— что в этом датчике приятно — так это гарантированный изготовителем "военный" температурный диапазон работоспособности (-40 + 150) данного датчика. Купить его можно, например тут:
www.chipdip.ru/product/2av54/
(Следует отметить, что десять лет назад он был В ЧЕТЫРЕ(!) раза дешевле… в рублях есс-но… 8-)

Читайте также  Фотоловушки отзывы владельцев и какие лучше брать

Этот датчик Холла я врезал в стандартный "трамблер" от ГАЗ-21 на место штатных контактов прерывателя.

Стабилизированный блок электронного зажигания

Достоинства электронного зажигания в двигателях внутреннего сгорания хорошо известны. Вместе с тем распространенные в настоящее время системы электронного зажигания пока недостаточно полно отвечают комплексу конструктивных и эксплуатационных требований. Системы с импульсным накоплением энергии [1, 2] сложны, не всегда надежны и практически недоступны для изготовления большинству автолюбителей. Простые системы с непрерывным накоплением энергии не обеспечивают стабилизации запасаемой энергии [З], а когда стабилизация достигнута — они почти так же сложны, как и импульсные системы [3,4].

Не удивительно поэтому, что опубликованная в журнале “Радио” статья Ю. Сверчкова [5] вызвала большой интерес читателей. Хорошо продуманный, предельно простой стабилизированный блок зажигания может, без всякого преувеличения, служить хорошим примером оптимального решения в конструировании подобных устройств.

Результаты эксплуатации блока по схеме Ю. Сверчкова показали, что при общем достаточно высоком качестве его работы и высокой надежности ему присущи и существенные недостатки. Главный из них — это малая длительность искры (не более 280 мкс) и соответственно малая ее энергия (не более 5 мДж).

Этот недостаток, присущий всем конденсаторным системам зажигания с одним периодом колебаний в катушке, приводит к неустойчивой работе холодного двигателя, неполному сгоранию обогащенной смеси во время прогрева, затрудненному пуску горячего двигателя. Кроме этого, стабильность напряжения на первичной обмотке катушки зажигания в блоке Ю. Сверчкова несколько ниже, чем в лучших импульсных системах. При изменении напряжения питания от 6 до 15 В первичное напряжение изменяется от 330 до 390 В (±8 %), тогда как в сложных импульсных системах это изменение не превышает ±2 %.

С увеличением частоты искрообразования напряжение на первичной обмотке катушки зажигания уменьшается. Так, при изменении частоты от 20 до 200 Гц (частота вращения коленчатого вала 600 и 6000 мин -1 соответственно) напряжение изменяется от 390 до 325 В, что также несколько хуже, чем в импульсных блоках. Однако этот недостаток можно

практически не принимать во внимание, поскольку при частоте 200 Гц пробивное напряжение искрового промежутка свечей (из-за остаточной ионизации и других факторов) уменьшается почти вдвое.

Автор этих строк, который более 10 лет экспериментировал с различными электронными системами зажигания, поставил задачу улучшить энергетические характеристики блока Ю. Сверчкова, сохранив простоту конструкции. Решение ее оказалось возможным благодаря внутренним резервам блока, поскольку энергия накопителя использована в нем лишь наполовину.

Поставленная цель достигнута введением режима многопериодной колебательной разрядки накопительного конденсатора на катушку зажигания, приводящей к практически полной его разрядке. Сама идея такого решения не нова [6], но используется редко. В результате разработан усовершенствованный блок электронного зажигания с характеристиками, которыми обладают далеко не все импульсные конструкции.

При частоте искрообраэования в пределах 20. 200 Гц блок обеспечивает длительность искры не менее 900 мкс. Энергия искры, выделяемая в свече зажигания при зазоре 0,9. 1 мм,— не менее 12 мДж. Точность поддержания энергии в накопительном конденсаторе при изменении напряжения питания от 5,5 до 15 В и частоте искрообразования 20 Гц — не хуже ±5 %. Остальные характеристики блока не изменились.

Существенно, что увеличение длительности искрового разряда достигнуто именно продолжительным колебательным процессом разрядки накопительного конденсатора. Искра в этом случае представляет собой серию из 7—9 самостоятельных разрядов. Такой знакопеременный искровой разряд (частота около 3,5 кГц) способствует эффективному сгоранию рабочей смеси при минимальной эрозии свечей, что выгодно отличает его от простого удлинения апериодической разрядки накопителя [2].

Схема преобразователя блока (рис. 1) практически не изменилась. Заменен только транзистор для некоторого увеличения мощности преобразователя и облегчения теплового режима. Исключены элементы, обеспечивавшие неуправляемый многоискровой режим работы. Существенно изменены цепи коммутации энергии и цепи управления разрядкой накопительного конденсатора СЗ. Он разряжается теперь в течение трех (а на частоте ниже 20 Гц — и более) периодов собственных колебаний контура, состоящего из первичной обмотки катушки зажигания и конденсатора СЗ, Обеспечивают такой режим элементы С2, R3, R4, VD6.

Учитывая, что работа преобразователя подробно описана в [5], рассмотрим только процесс колебательной разрядки конденсатора СЗ. При размыкании контактов прерывателя конденсатор С4, разряжаясь через управляющий переход тринистора VS1, диод VD8 и резисторы R7, R8, открывает тринистор, который подключает заряженный конденсатор СЗ к первичной обмотке катушки зажигания. Постепенно увеличивающийся ток через обмотку по окончании первой четверти периода имеет максимальное значение, а напряжение на конденсаторе СЗ в этот момент становится равным нулю (рис. 2).

Вся энергия конденсатора (за вычетом тепловых потерь) преобразована в магнитное поле катушки зажигания, которое, стремясь сохранить значение и направление тока, начинает перезаряжать конденсатор СЗ через открытый тринистор. В результате по окончании второй четверти периода ток и магнитное поле катушки зажигания равны нулю, в конденсатор СЗ заряжен до 0,85 исходного (по напряжению) уровня в противоположной полярности. С прекращением тока и сменой полярности на конденсаторе СЗ закрывается тринистор VS1, но открывается диод VDS. Начинается очередной процесс разрядки конденсатора СЗ через первичную обмотку катушки зажигания, направление тока через которую меняется на противоположное. По окончании периода колебаний (т. е. приблизительно через 280 мкс) конденсатор СЗ оказывается заряженным в исходной полярности до напряжения, равного 0,7 начального. Это напряжение закрывает диод VDS, разрывая цепь разрядки.

В рассмотренном интервале времени малое сопротивление попеременно открывающихся элементов VD5 и VS1 шунтирует подключенную параллельно им цепь R3R4C2, вследствие чего напряжение на ее концах близко к нулю. По окончании же периода, когда тринистор и диод закрываются, напряжение конденсатора СЗ (около 250 В) через катушку зажигания прикладывается к этой цепи. Импульс напряжения, снимаемый с резистора R3, пройдя через диод VD6, вновь открывает тринистор VS1, и все процессы, описанные выше, повторяются.

Затем следует третий, а иногда (при пуске) и четвертый цикл разрядки. Процесс продолжается до тех пор, пока конденсатор С3, теряющий при каждом цикле около 50 % энергии, не разрядится почти полностью. В результате длительность искры возрастает до 900. 1200 мкс, а ее энергия — до 12. 16 мДж,

На рис. 2 показан примерный вид осциллограммы напряжения на первичной обмотке катушки зажигания. Для сравнения штриховой линией показана такая же осциллограмма блока Ю. Сверчкова (первые периоды колебаний на обоих осциллограммах совпадают),

Для повышения защищенности от дребезга контактов прерывателя пусковой узел пришлось несколько изменить. Постоянная времени цепи зарядки конденсатора С4 путем выбора соответствующего резистора R6 увеличена до 4 мс; увеличен также разрядный ток конденсатора (т. е. ток запуска тринистора), определяемый сопротивлением цепи резисторов R7, R8.

Блок электронного зажигания был испытан в течение трех лет на автомобиле “Жигули” и очень хорошо зарекомендовал себя. Резко повысилась устойчивость работы двигателя после пуска. Даже зимой при температуре около —30 °С пуск двигателя был легким, начинать движение можно было после прогрева в течение 5 мин. Прекратились наблюдавшиеся при использовании блока Ю. Сверчкова перебои в работе двигателя в первые минуты движения, улучшилась динамика разгона.

В трансформаторе Т1 использован магнитопровод ШЛ16Х8. Зазор 0,25 мм обеспечен тремя прессшпановыми прокладками. Обмотка I содержит 50 витков провода ПЭВ-2 0,55; II — 70 витков ПЭВ-2 0,25; III — 450 витков ПЭВ-2 0,14. В последней обмотке между всеми слоями следует проложить по одной прокладке из конденсаторной бумаги, а всю обмотку отделить от остальных одним-двумя слоями кабельной бумаги,

Готовый трансформатор покрывают 2—3 раза эпоксидной смолой или заливают его смолой полностью в пластмассовой или металлической коробке, Не следует применять Ш-образный магнитопровод, поскольку, как показывает опыт, трудно выдержать по всей толщине набора заданный зазор, а также избежать замыкания наружных пластин. Оба этих фактора, особенно второй, резко снижают мощность генератора .зарядных импульсов.

При налаживании генераторной части блока можно использовать рекомендации Ю. Сверчкова в [5].

Благодаря высокой надежности блок можно подключать без разъема X1 (отключение конденсатора Спр прерывателя обязательно), который предназначен для возможного аварийного перехода на батарейное зажигание, но первичная установка момента зажигания при этом будет существенно сложнее. При сохранении же разъема Х1 переход на батарейное зажигание очень прост — в гнездовую часть разъема Х1 вместо колодки блока вставляют колодку-замыкатель, у которой соединены контакты 2, 3 и 4.

Г.КАРАСЕВ, г. Ленинград

ЛИТЕРАТУРА:
1. А. Синельников. Чем различаются блоки,— За рулем. 1977, № 10. с. 17,
2. А. Синельников. Блок электронного зажигания повышенной надежности. Сб. “В помощь радиолюбителю”, вып. 73.— М.: ДОСААФ СССР, с. 38.
3. А. Синельников. Электроника в автомобиле. — М.: Энергия, 1976.
4. А. Синельников. Электроника я автомобиле.— М.: Радио и связь, 1985.
5. Ю. Сверчков. Стабилизированный многоискровой блок зажигания. — Радио, 1982, № 5. с. 27.
6. Э. Литке. Конденсаторная система зажигания. Сб. “В помощь радиолюбителю”, вып, 78.- М.: ДОСААФ СССР, с. 35.

Стабилизированный блок электронного зажигания

Достоинства электронного зажигания в двигателях внутреннего сгорания хорошо известны. Вместе с тем распространенные в настоящее время системы электронного зажигания пока недостаточно полно отвечают комплексу конструктивных и эксплуатационных требований. Системы с импульсным накоплением энергии [1, 2] сложны, не всегда надежны и практически недоступны для изготовления большинству автолюбителей. Простые системы с непрерывным накоплением энергии не обеспечивают стабилизации запасаемой энергии [З], а когда стабилизация достигнута — они почти так же сложны, как и импульсные системы [3,4].

Читайте также  Схема комбинации приборов камаз

Не удивительно поэтому, что опубликованная в журнале “Радио” статья Ю. Сверчкова [5] вызвала большой интерес читателей. Хорошо продуманный, предельно простой стабилизированный блок зажигания может, без всякого преувеличения, служить хорошим примером оптимального решения в конструировании подобных устройств.

Результаты эксплуатации блока по схеме Ю. Сверчкова показали, что при общем достаточно высоком качестве его работы и высокой надежности ему присущи и существенные недостатки. Главный из них — это малая длительность искры (не более 280 мкс) и соответственно малая ее энергия (не более 5 мДж).

Этот недостаток, присущий всем конденсаторным системам зажигания с одним периодом колебаний в катушке, приводит к неустойчивой работе холодного двигателя, неполному сгоранию обогащенной смеси во время прогрева, затрудненному пуску горячего двигателя. Кроме этого, стабильность напряжения на первичной обмотке катушки зажигания в блоке Ю. Сверчкова несколько ниже, чем в лучших импульсных системах. При изменении напряжения питания от 6 до 15 В первичное напряжение изменяется от 330 до 390 В (±8 %), тогда как в сложных импульсных системах это изменение не превышает ±2 %.

С увеличением частоты искрообразования напряжение на первичной обмотке катушки зажигания уменьшается. Так, при изменении частоты от 20 до 200 Гц (частота вращения коленчатого вала 600 и 6000 мин -1 соответственно) напряжение изменяется от 390 до 325 В, что также несколько хуже, чем в импульсных блоках. Однако этот недостаток можно

практически не принимать во внимание, поскольку при частоте 200 Гц пробивное напряжение искрового промежутка свечей (из-за остаточной ионизации и других факторов) уменьшается почти вдвое.

Автор этих строк, который более 10 лет экспериментировал с различными электронными системами зажигания, поставил задачу улучшить энергетические характеристики блока Ю. Сверчкова, сохранив простоту конструкции. Решение ее оказалось возможным благодаря внутренним резервам блока, поскольку энергия накопителя использована в нем лишь наполовину.

Поставленная цель достигнута введением режима многопериодной колебательной разрядки накопительного конденсатора на катушку зажигания, приводящей к практически полной его разрядке. Сама идея такого решения не нова [6], но используется редко. В результате разработан усовершенствованный блок электронного зажигания с характеристиками, которыми обладают далеко не все импульсные конструкции.

При частоте искрообраэования в пределах 20. 200 Гц блок обеспечивает длительность искры не менее 900 мкс. Энергия искры, выделяемая в свече зажигания при зазоре 0,9. 1 мм,— не менее 12 мДж. Точность поддержания энергии в накопительном конденсаторе при изменении напряжения питания от 5,5 до 15 В и частоте искрообразования 20 Гц — не хуже ±5 %. Остальные характеристики блока не изменились.

Существенно, что увеличение длительности искрового разряда достигнуто именно продолжительным колебательным процессом разрядки накопительного конденсатора. Искра в этом случае представляет собой серию из 7—9 самостоятельных разрядов. Такой знакопеременный искровой разряд (частота около 3,5 кГц) способствует эффективному сгоранию рабочей смеси при минимальной эрозии свечей, что выгодно отличает его от простого удлинения апериодической разрядки накопителя [2].

Схема преобразователя блока (рис. 1) практически не изменилась. Заменен только транзистор для некоторого увеличения мощности преобразователя и облегчения теплового режима. Исключены элементы, обеспечивавшие неуправляемый многоискровой режим работы. Существенно изменены цепи коммутации энергии и цепи управления разрядкой накопительного конденсатора СЗ. Он разряжается теперь в течение трех (а на частоте ниже 20 Гц — и более) периодов собственных колебаний контура, состоящего из первичной обмотки катушки зажигания и конденсатора СЗ, Обеспечивают такой режим элементы С2, R3, R4, VD6.

Учитывая, что работа преобразователя подробно описана в [5], рассмотрим только процесс колебательной разрядки конденсатора СЗ. При размыкании контактов прерывателя конденсатор С4, разряжаясь через управляющий переход тринистора VS1, диод VD8 и резисторы R7, R8, открывает тринистор, который подключает заряженный конденсатор СЗ к первичной обмотке катушки зажигания. Постепенно увеличивающийся ток через обмотку по окончании первой четверти периода имеет максимальное значение, а напряжение на конденсаторе СЗ в этот момент становится равным нулю (рис. 2).

Вся энергия конденсатора (за вычетом тепловых потерь) преобразована в магнитное поле катушки зажигания, которое, стремясь сохранить значение и направление тока, начинает перезаряжать конденсатор СЗ через открытый тринистор. В результате по окончании второй четверти периода ток и магнитное поле катушки зажигания равны нулю, в конденсатор СЗ заряжен до 0,85 исходного (по напряжению) уровня в противоположной полярности. С прекращением тока и сменой полярности на конденсаторе СЗ закрывается тринистор VS1, но открывается диод VDS. Начинается очередной процесс разрядки конденсатора СЗ через первичную обмотку катушки зажигания, направление тока через которую меняется на противоположное. По окончании периода колебаний (т. е. приблизительно через 280 мкс) конденсатор СЗ оказывается заряженным в исходной полярности до напряжения, равного 0,7 начального. Это напряжение закрывает диод VDS, разрывая цепь разрядки.

В рассмотренном интервале времени малое сопротивление попеременно открывающихся элементов VD5 и VS1 шунтирует подключенную параллельно им цепь R3R4C2, вследствие чего напряжение на ее концах близко к нулю. По окончании же периода, когда тринистор и диод закрываются, напряжение конденсатора СЗ (около 250 В) через катушку зажигания прикладывается к этой цепи. Импульс напряжения, снимаемый с резистора R3, пройдя через диод VD6, вновь открывает тринистор VS1, и все процессы, описанные выше, повторяются.

Затем следует третий, а иногда (при пуске) и четвертый цикл разрядки. Процесс продолжается до тех пор, пока конденсатор С3, теряющий при каждом цикле около 50 % энергии, не разрядится почти полностью. В результате длительность искры возрастает до 900. 1200 мкс, а ее энергия — до 12. 16 мДж,

На рис. 2 показан примерный вид осциллограммы напряжения на первичной обмотке катушки зажигания. Для сравнения штриховой линией показана такая же осциллограмма блока Ю. Сверчкова (первые периоды колебаний на обоих осциллограммах совпадают),

Для повышения защищенности от дребезга контактов прерывателя пусковой узел пришлось несколько изменить. Постоянная времени цепи зарядки конденсатора С4 путем выбора соответствующего резистора R6 увеличена до 4 мс; увеличен также разрядный ток конденсатора (т. е. ток запуска тринистора), определяемый сопротивлением цепи резисторов R7, R8.

Блок электронного зажигания был испытан в течение трех лет на автомобиле “Жигули” и очень хорошо зарекомендовал себя. Резко повысилась устойчивость работы двигателя после пуска. Даже зимой при температуре около —30 °С пуск двигателя был легким, начинать движение можно было после прогрева в течение 5 мин. Прекратились наблюдавшиеся при использовании блока Ю. Сверчкова перебои в работе двигателя в первые минуты движения, улучшилась динамика разгона.

В трансформаторе Т1 использован магнитопровод ШЛ16Х8. Зазор 0,25 мм обеспечен тремя прессшпановыми прокладками. Обмотка I содержит 50 витков провода ПЭВ-2 0,55; II — 70 витков ПЭВ-2 0,25; III — 450 витков ПЭВ-2 0,14. В последней обмотке между всеми слоями следует проложить по одной прокладке из конденсаторной бумаги, а всю обмотку отделить от остальных одним-двумя слоями кабельной бумаги,

Готовый трансформатор покрывают 2—3 раза эпоксидной смолой или заливают его смолой полностью в пластмассовой или металлической коробке, Не следует применять Ш-образный магнитопровод, поскольку, как показывает опыт, трудно выдержать по всей толщине набора заданный зазор, а также избежать замыкания наружных пластин. Оба этих фактора, особенно второй, резко снижают мощность генератора .зарядных импульсов.

При налаживании генераторной части блока можно использовать рекомендации Ю. Сверчкова в [5].

Благодаря высокой надежности блок можно подключать без разъема X1 (отключение конденсатора Спр прерывателя обязательно), который предназначен для возможного аварийного перехода на батарейное зажигание, но первичная установка момента зажигания при этом будет существенно сложнее. При сохранении же разъема Х1 переход на батарейное зажигание очень прост — в гнездовую часть разъема Х1 вместо колодки блока вставляют колодку-замыкатель, у которой соединены контакты 2, 3 и 4.

1. А. Синельников. Чем различаются блоки,— За рулем. 1977, № 10. с. 17,

2. А. Синельников. Блок электронного зажигания повышенной надежности. Сб. “В помощь радиолюбителю”, вып. 73.— М.: ДОСААФ СССР, с. 38.

3. А. Синельников. Электроника в автомобиле. — М.: Энергия, 1976.

4. А. Синельников. Электроника я автомобиле.— М.: Радио и связь, 1985.

5. Ю. Сверчков. Стабилизированный многоискровой блок зажигания. — Радио, 1982, № 5. с. 27.

6. Э. Литке. Конденсаторная система зажигания. Сб. “В помощь радиолюбителю”, вып, 78.- М.: ДОСААФ СССР, с. 35.

Автор: Г.КАРАСЕВ г. Ленинград

Мнения читателей
  • Skrtbin / 30.03.2011 — 13:51

роботает на своём опыте знаю

Вы можете оставить свой комментарий, мнение или вопрос по приведенному выше материалу:

Автомобиль. Свеча, искра, мороз и топливо.

Электронные системы зажигания и раньше на прилавках были, и сейчас имеются. Не знаю, как сейчас, а раньше я интересовался их схемами — квелые какие-то, неправильные были. Работали, конечно, но всегда, как правило, без многоискрового режима. А вообще: нужен ли этот самый многоискровой режим?

Читайте также  Очистка системы охлаждения ваз

Чего только ни говорят о нем! Что сейчас, что раньше. И эрозия контактов, и перегрузка кривошипно-шатунного, и проскакивание искры в другой цилиндр не вовремя. Я думаю, такое говорят те, кто ни разу не пробовал установить себе многоискровую систему.

Хотя, зачем я это тут пишу? Сейчас все иномарки, бортовые компьютеры. Но все же напишу. Есть еще те, кто на отечественных восьмерках, девятках, да и копейки с четыреста двенадцатыми нередко попадаются.

Так вот. 1982 год. Это скока прошло уже? 26 лет, четверть века. Тогда в журнале Радио опубликовали схему Юрия Сверчкова «Многоискровой стабилизированный блок зажигания». А я еще на мотоцикле ездил, ИЖ-Юпитер у меня был. Увидел эту схему, загорелся поставить себе на мотоцикл. Загорелся, собрал да поставил.

А болезнь у моего мотоцикла странная была до этого: проехал десяток-другой километров — выкручивай и продувай свечи. Без этого дальше не едет, хоть с бубном вокруг него танцуй. Но как только поставил многоискровку Сверчкова — как рукой сняло. Я забыл про свечи не на один год.

Доработался, доездился до такого, что контактные стержни, проходящие по центру свечи, ослабели в своих отверстиях, и через образовавшиеся щели стали пробиваться газы. Но продолжало работать!

Часто, практически каждый день приходилось и зимой ездить. А морозы нехилые бывают у нас, и завести мотоцикл в такие дни — мороки немало. А я выкатываю, включаю фары дальним светом, нажимаю тормоз, чтобы задний фонарь горел — и пару-тройку раз качнув кикстартером, надежно завожу свой агрегат. Мужики пальцем у виска крутят и тут же удивляются.

Короче, про зажигание я вообще забыл. Пока оно мне не напомнило о себе очень неприятным способом: аккумулятор высох практически досуха. И то обнаружил я это только при его случайном осмотре, поскольку все продолжало работать: мотоцикл заводился и работал нормально.

Тогда я собрал несколько таких блоков зажигания, ставил всем своим знакомым. На жигулях, москвичах, запорожцах, ижах, уралах и днепрах — на всякой технике работали эти системы. Однажды, кстати, пробовали эксперимент провести. Поставил систему на жигули. Снимаем плюсовую клемму с аккумулятора и тычем ее на первые 2 банки (тогда аккумуляторы были с открытыми перемычками). Вобщем, подаем в бортовую сеть всего лишь 3 вольта, проворачиваем двигатель рукояткой и он спокойно заводится и работает.

А однажды, уже на первой своей машине (копейке) ночью в непогоду домой добирался. Зарядка пропала, а до дома еще километров 40 надо было ехать. Про автосервисы речи нет, не московская кольцевая. Поля только вокруг да мгла промозглая, сырая. И что? А ничего. Домой приехал, фары уже практически нисколько не светили, едва теплились, аккумулятор посажен. Но двигатель за всю дорогу не дал ни одного сбоя!

Года четыре назад принесли одну собранную мной систему, сломалась. Это сколько она проработала? Лет 20, не меньше. И что же это за система такая волшебная, чем она уникальна, почему такие сервисы интересные выдает?

Уникальна она прежде всего своей простотой и гениальностью изобретателя Юрия Сверчкова. И при такой своей простоте обеспечивает очень даже приемлемую логику своей работы.

Во-первых, в отличие от стандартной системы зажигания, на катушке напряжения нет. Известно ведь, что если оставить машину с включенным зажиганием и неработающим двигателем, и если при этом контакты прерывателя будут замкнуты, через катушку идет огромный ток, 3-4 ампера. Она греется, пока вообще не взорвется.

И даже если двигатель работает, контакты находятся в замкнутом состоянии почти половину своего времени, то есть, катушка эту половину находится под напряжением и потребляет значительный ток.

Электронка этого не допускает. Катушка практически все время обесточена, и лишь в момент искрообразования, когда это требуется, на нее выбрасывается не 12, а 400(!) вольт.

Далее. В обычной системе зажигания через контакты идет ток, равный току через катушку. Это те самые 3-4 ампера. Для искрообразования контакты разрываются, при этом происходит их выгорание. Конденсатор несколько сглаживает этот процесс, если исправен.

В электронке через контакты прерывателя идет ток, исчисляемый несколькими МИЛЛИамперами. О выгорании речи вообще нет, а конденсатор вообще из схемы отключается. Не нужен.

Самое интересное: когда мы включаем стартер, напряжение в бортовой сети падает. Нагрузка ведь не хилая! А электронка этот момент отслеживает, отлавливает и пока напряжение в сети низкое (стартер работает), идет многоискровой режим. Как только машина завелась, отключился стартер и заработал генератор, напряжение поднялось до 14 вольт — электронка переходит в штатный одноискровой режим. Именно поэтому я на мотоцикле включал фары при заводке. Чтобы посадить напряжение в бортовой сети.

А что такое многоискровой режим. Это просто: пока контакты прерывателя разомкнуты, на свече горит дуга между ее контактами. При этом любая смесь в цилиндре (бедная, богатая. ) поневоле воспламеняется. Это и называется легким пуском двигателя в любых условиях, ведь идеально отрегулированный карбюратор — большая редкость.

Такой легкий пуск, когда машина заводится, что называется, «с полтычка», я использую уже третий десяток лет. Летом, зимой — неважно. Лишь бы бензин был. Так что, проверено на себе!

Что интересно: такой многоискровой режим очень удобен, когда случается отрегулировать зажигание. Не надо никаких приборов, контрольных лампочек! Снимаем высоковольный провод, кладем его так, чтобы от центрального проводника до массы было не более 1 см, и поворачиваем тихонько прерыватель. Загорелась дуга на проводе — ага, контакты разомкнулись. Погасла дуга — значит, контакты замкнулись. Правда, для такой работы необходимо пониженное напряжение от аккумулятора, но это другой вопрос. Достаточно бывает повключать все, что можно (фары, габариты, тормоза. )

И еще: система не напрасно называется стабилизированной. Даже в том случае, если напряжение в бортовой сети очень низкое, на катушку выбрасывается стабильно те же 400 вольт, то есть, мощность искры остается прежней. И до каких пределов? До 3-х вольт! Проверено. Именно благодаря этому я тогда ночью доехал до дома.

Вобщем, пусть скептики говорят чего угодно, но я доподлинно знаю: система Юрия Сверчкова (жив ли он сегодня? Поблагодарить бы его.) — замечательная штука для наших отечественных машин и любых механизмов, где используется прерыватель, катушка и свеча. Особенно в морозы! Сколько раз я уже заочно, про себя благодарил Юрия — не счесть!

Кстати, впоследствии появились и усовершенствованные системы от других авторов, причем, некоторые из них многоискровой режим отключали вообще. Дескать, при такой мощной искре он и не нужен, и так хорошо заводится. У них, в теплых гаражах, может, и заводится. Попробовал бы он мою промерзшую машину.

Я почему так говорю? Потому что семь лет назад, когда купил Ниву, поставил себе такую «усовершенствованную», без многоискрового. Сейчас добрался таки, возвращаюсь к прежней схеме от Сверчкова. Без многоискрового значительно хуже, пусть хоть что мне говорят.

Статью про этот блок зажигания из журнала Радио в сети найти очень трудно. Но у меня есть эта статья полностью, если кому нужно, смотрите здесь.

В статье, однако, говорится, что корпус этого блока сделан так-то и так-то, но я по другому варианту решил. Просто подошел к автомеханику на своей работе, порылись в его кладовке и извлекли из ее недр старый сгоревший коммутатор от какой-то машины. На крышке выдавлено то, что показано.

Я из этого корпуса вытащил все, что там было и выбросил. Осталось чистое поле для деятельности. Хороший, емкий корпус.

Посидел, поразмыслил, что куда в этом корпусе разместить, да вытравил плату по методике, описанной в статье «Как изготовить печатную плату».

Тут показано размещение элементов на этой плате. А остальные (трансформатор блокинг-генератора, стабилитрон, транзистор, конденсатор) закреплены прямо в корпусе.

А вот это блок на прогоне. Подано напряжение около 10 вольт, чтобы блок работал в многоискровом режиме. Провод прерывателя не замкнут на массу, то есть, имитируются разомкнутые контакты.

Дуга шпарит уже около получаса, блок стабильно работает. И запах озона, как после грозы:)

Это я картонкой пытался разорвать дугу, ни фига не получилось. Сквозь картон шурует. И в картоне на просвет видно мельчайшие дырдочки, пробитые искрой.

После испытаний закрыл плату цапонлаком, а выводы трансформатора, чтобы не болтались, зафиксировал силиконовым герметиком.

В магазине автозапчастей купил разъем, привязал его к выводным контактам блока. Почему разъем? Потому что есть еще один такой разъем, заглушка. То есть, если вдруг блок откажет в пути, я вместо его разъема вставляю заглушку, которая восстанавливает штатную схему зажигания. Правда, еще ни разу за много лет не приходилось эту операцию проделывать (тьфу, тьфу, тьфу. )

Все. Ключ на старт — и заговорила, ласточка.

Хотите что-то сказать? Приходите на мой видеоканал, где можно общаться в комментариях к видеороликам.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: