Сопрягаемые детали 3 примера

Сопрягаемые детали. Охватывающие и охватываемые поверхности. Посадка. Посадка с зазором, посадка с натягом. Переходная посадка

Сопрягаемые детали— детали, подвижно или неподвижно со­единяемые сборкой и контактирующие друг с другом по сопрягае­мым (после сборки — по сопряженным) поверхностям. Различают охватываемые и охватывающие детали или поверхности, обозначае­мые соответственно . Размеры сопрягаемых поверхно­стей при изготовлении должны находиться в пределах допуска, а при сборке по этим поверхностям могут получаться зазоры S или натяги N за счет деформации соединяемых деталей.

Вал— это наружная охватываемая поверхность.

Отверстие— это внутренняя охватывающая поверхность.

В машиностроении преимущественно применяют посадки системы отверстия. Посадки системы вала применяют для соедине­ния нескольких деталей с гладким валом (штифтом) по разным по­садкам (например, установка нескольких подвижных блоков в обой­ме на одну ось); для установки изделий массового производства в корпусные детали (например, для соединения наружных колец под­шипников качения с корпусами). В приборостроении точные оси малого диаметра (менее 3 мм) часто изготавливают из гладких ка­либрованных прутков, в этих случаях система вала находит широкое применение. При выборе квалитетов необходимо учитывать ряд об­щих положений.

Наличие посадок и их видов. В интервале размеров от 1 до 500 мм посадки с зазором установлены в квалитетах 4-12, переход­ные — в квалитетах 4-7, посадки с натягом — в квалитетах 5-8. Если вид посадки определяют по результатам расчета, то квалитет выби­рают одновременно с посадкой. При подборе квалитетов часто ис­пользуют опыт проектирования и эксплуатации аналогичных изде­лий. В машинах и приборах при высоких требованиях к ограничению разброса зазоров и натягов посадок применяют для отверстий квалитет 7, для валов квалитет 6; при особо высоких требованиях к точности соединений (узлы подшипников качения высокой точно­сти в приборах) применяют для отверстий квалитет 6 и для валов квалитет 5; при менее высоких требованиях к ограничению разброса зазоров и натягов для упрощения технологии можно применять ква­литет 8; в соединениях, допускающих большие зазоры, и для облегчения сборки применяют квалитеты 9-12; допуски свободных разме­ров назначаются по квалитету 12 и грубее. Учитывая повышенные требования к качеству машин и приборов, рекомендуется шире при­менять квалитеты 6-8.

Основной причиной потери работоспособности машинами се­рийного выпуска является снижение точности в результате износа основных деталей и соединений, поэтому в настоящее время распро­странен метод назначения допусков и выбора посадок с зазором, ос­нованный на гарантированных запасах точности эксплуатационных показателей машин. Суть этого метода заключается в том, что на ос­новные детали и соединения назначают несколько завышенные до­пуски, которые должны обеспечивать эксплуатационные показатели машин (точность вращения шпинделя, перемещения суппорта и пр.), а также компенсировать погрешности изготовления и сборки. Такой допуск называют функциональным. Он включает в себя эксплуатаци­онный допуск, обеспечивающий запас точности деталей и их соеди­нений с целью сохранения работоспособности машины в течение на­меченного срока службы, и конструктивный допуск, обеспечивающий компенсацию погрешностей изготовления деталей и сборки изделий. Таким образом, функциональные допуски отдельной детали и посад­ки с зазором будут определяться суммой названных допусков.

Выбор посадок. Основными характеристиками посадок явля­ются наименьшие натяги или зазоры и их допуски. При переходе от посадок с большими зазорами (образованными полями а, А) к по­садкам с большими натягами (образованными полями zc, ZC) при неизменном номинальном размере наименьшие зазоры уменьшают­ся и наименьшие натяги увеличиваются. У переходных посадок в том же направлении (от поля js, Js к полю и, N) повышается веро­ятность получения натягов. При переходе к менее точным квалитетам при одинаковых посадках и номинальных размерах значения Smin и Nmin не изменяются, но допуски посадок при этом увеличива­ются. Например, допуск посадки аза больше допуска посадки С увеличением допуска посадки утрачивают определенность характера соединения, что особенно нежелательно для посадок с натягами и переходных. Поэтому указан­ные посадки образуют полями допусков не грубее Для правиль­ного применения посадок необходимо знать их основные свойства.

Посадки с натягомпо значению гарантированного натяга подразделяют на три подгруппы. Посадки с минимальным гаранти­рованным натягом применяют при малых нагрузках и для уменьшения деформаций собранных деталей. Неподвижность соединения обеспечивают дополнительным крепле­нием. Эти посадки допускают редкие разборки. Посадки с умерен­ными гарантированными натягами

допускают передачу на­грузок средней величины без дополнительного крепления, а также с дополнительным креплением; могут применяться для передачи больших нагрузок, если прочность деталей не позволяет применить посадки с большими натягами, сборка может производиться под прессом или способом термических деформаций. Посадки с боль­шими гарантированными натягами

передают тяжелые и динамические нагрузки без дополнительного крепления. Необходима проверка соединяемых деталей на прочность; сборка осуществляется в основном способом термических деформаций.

Переходные посадкиобразуются полями допусков, которые установлены в квалитетах 4-8 и характеризуются возможностью по­лучения сравнительно небольших зазоров или натягов. Они приме­няются в неподвижных разъемных соединениях при необходимости точного центрирования, при этом необходимо дополнительное кре­пление собранных деталей. Посадки с более вероятными натягами

применяют при больших удар­ных нагрузках, при повышенной точности центрирования и редких разборках, а также при затрудненной сборке вместо посадок с ми­нимальным гарантированным натягом.

Посадки с равновероятными натягами и зазорами

имеют наибольшее применение из переходных посадок, так как для сборки и разборки не требуют больших усилий и обес­печивают высокую точность центрирования. Посадки с более веро­ятными зазорами применяют при небольших статических нагрузках, частых разборках и затрудненной сборке, а также для регулирования взаимного положения деталей.

Посадки с зазоромобразуются полями допусков установлены в квалитетах 4-12 и применяются в неподвижных и подвижных соединениях для облегчения сборки при невысокой точности центрирования, для регулирования взаимного положения деталей, для обеспечения смазки трущихся поверхностей (подшип­ники скольжения) и компенсации тепловых деформаций, для сборки деталей с антикоррозийными покрытиями. Посадки с обеспечивают высокую точность центрирования и поступательного перемещения деталей в регулируемых соединениях и могут заме­нять переходные посадки.

Для подбора посадок применяют методы подобия и расчет­ный. В методе подобия используют рекомендации по применению различных посадок, разработанных в результате обобщения опыта проектирования и эксплуатации разнообразных машин, механизмов, приборов. При подборе посадок необходимо учитывать конструк­тивные и эксплуатационные особенности проектируемого соедине­ния. Например, зазоры и натяги для стандартных посадок установ­лены для следующих условий: нормальная температура работы со­единение соединяемые детали изготовлены из материалов с одинаковыми или близкими температурными коэффициентами линейного расширения; отношение длины соединения к диаметру Если перечисленные условия не выполнены, то выбор по­садок корректируется. При принимают посадки с больши­ми зазорами, а при — с меньшими.

При больших тепловых деформациях отверстия выбирают по­садку с уменьшенным зазором, а при больших тепловых деформа­циях вала — с увеличенным зазором. Для посадок с натягами при ма­лой длине напрессовки увеличивают натяги и уменьшают их с уве­личением длины; для соединения тонкостенных деталей или дета лей, изготовленных из малопрочных материалов, применяют посад­ки с меньшими натягами и т.д. Метод подобия характеризуется от­сутствием точных критериев и требует большого опыта проектиро­вания. Расчетный метод дает более обоснованные результаты. Одна­ко неисчерпаемое разнообразие соединений препятствует созданию универсального метода расчета посадок.

Сопряжения в инженерной графике на чертежах с примерами

В очертаниях технических форм часто встречаются плавные переходы от од- ной линии к другой. Плавный переход одной линии в другую, выполненный при помощи промежуточной линии, называется сопряжением. Построение сопряжений основано на следующих положениях геометрии.

  1. Переход окружности в прямую будет плавным только тогда, когда заданная прямая является касательной к окружности (рис. 11а). Радиус окружности, проведенный в точку касания К, перпендикулярен к касательной прямой.
  2. Переход от одной окружности к другой в точке К только тогда будет плавным, когда окружности имеют в данной точке общую касательную (рис. 11б).

Сопряжения в инженерной графике на чертежах с примерами

Точка касания К и центры окружностей

  • Центром сопряжения О называется точка, равноудаленная от сопрягаемых линий (рис. 12).
  • Точкой сопряжения А (В) называется точка касания двух сопрягаемых линий (рис. 12).
  • Дуга сопряжения АВ – это дуга окружности, с помощью которой выполняется сопряжение (рис. 12).
  • Радиус сопряжения R – это радиус дуги сопряжения (рис. 12).
Читайте также  Процесс получения прав после лишения за пьянку

Для выполнения сопряжений необходимо определить три элемента построения: 1) радиус сопряжения; 2) центр сопряжения; 3) точки сопряжения.

Сопряжение двух пересекающихся прямых линий

Пусть даны две пересекающиеся прямые m, n и радиус сопряжения R (рис. 12). Необходимо построить сопряжение данных прямых дугой окружности радиусом R.

Сопряжения в инженерной графике на чертежах с примерами

Выполним следующие построения:

  1. Построим множество точек центров сопряжения, удаленных от прямой n на расстояние радиуса R сопряжения. Таким множеством является прямая параллельная данной прямой n и отстоящая от неё на расстояние R.
  2. Построим множество точек центров сопряжения, удаленных от прямой m на расстояние радиуса сопряжения. Таким множеством является прямая параллельная m и отстоящая от последней на расстояние R.
  3. В пересечении построенных прямых найдем центр сопряжения О.
  4. Определим точку А сопряжения на прямой n. Для этого опустим из центра О перпендикуляр на прямую n . Для определения точки сопряжения В на прямой m необходимо опустить соответственно перпендикуляр из центра О на прямую m.

Проведем дугу сопряжения AB. Теперь будут определены все элементы сопряжения: радиус, центр и точки сопряжения.

Сопряжения прямой с окружностью

Сопряжение прямой с окружностью может быть внешним или внутренним. Рассмотрим построение внешнего сопряжения прямой с окружностью.

Пример 1. Пусть задана окружность радиусом R с центром в точке и прямая m. Требуется построить сопряжение окружности с прямой дугой окружности заданного радиуса R (рис. 13).

Для решения задачи выполним следующие построения:

  1. Построим множество точек центров сопряжения, удаленных от сопрягаемой прямой на расстояние R. Это множество задает прямая параллельная m и отстоящая от неё на расстояние R.
  2. Множество точек центров сопряжения, удаленных от окружности n на рас- стояние R, есть окружность проведенная радиусом
  3. Центр сопряжения О находим как точку пересечения линий
  4. Точку сопряжения А находим как основание перпендикуляра, проведенного из точки О на прямую m. Чтобы построить точку сопряжения В, необходимо про- вести линию центров т.е. соединить центры сопряженных дуг. В пересечении линии центров с заданной окружностью определим точку В.
  5. Проведем дугу сопряжения АВ.

Сопряжения в инженерной графике на чертежах с примерамиСопряжения в инженерной графике на чертежах с примерами

Пример 2. При построении внутреннего сопряжения (рис. 14) последовательность построений остается та же, что и в примере 1. Однако центр сопряжения определяется с помощью вспомогательной дуги окружности, проведенной из центра , радиусом

Сопряжение двух окружностей

Сопряжение двух окружностей может быть внешним, внутренним и смешанным. Пусть задан радиус сопряжения R, а центры сопряжения и точки сопряжения следует найти.

Пример 1. Построим сопряжение с внешним касанием двух данных окружностей m и n с радиусами дугой заданного радиуса R (рис. 15а).

  1. Для нахождения центра сопряжения О проведем окружность удаленную от данной окружности m на расстояние R . Так как сопряжение с внешним касанием, то радиус окружности равен
  2. Радиусом проведем окружность , удаленную от данной окружности n на расстояние R.
  3. Найдем центр сопряжения О как точку пересечения окружностей .
  4. Найдем точку сопряжения А как пересечение линии центров с дугой m.
  5. Аналогично найдем точку В как пересечение линии центров с дугой n .
  6. Проведем дугу сопряжения АВ.

Сопряжения в инженерной графике на чертежах с примерами

Пример 2. Построим сопряжение с внутренним касанием двух данных окружностей m и n с радиусами дугой радиусом R (рис. 15б).

  1. Для нахождения центра сопряжения О проведем окружность на расстоянии от данной окружности m.
  2. Проведем окружность на расстоянии от данной окружности n.
  3. Центр сопряжения О найдем как точку пересечения окружностей
  4. Точку сопряжения А найдем как точку пересечения линии центров с заданной окружностью m.
  5. Точку сопряжения В найдем как точку пересечения линии центров c заданной окружностью n.
  6. Проведем дугу сопряжения AВ с центром в точке O.

Пример 3. На рис. 16 приведен пример построения сопряжения с внешне- внутренним касанием.

Сопряжения в инженерной графике на чертежах с примерами

Построение касательных

Пример 1. Дана окружность с центром в точке и точка вне её. Через данную точку провести касательную к данной окружности (рис. 17).

Сопряжения в инженерной графике на чертежах с примерами

Для решения задачи выполним следующие построения.

  1. Соединим точку с центром окружности
  2. Находим середину С отрезка
  3. Из точки С, как из центра, проведем вспомогательную окружность радиусом
  4. В точке пересечения вспомогательной окружности с заданной получим точку касания А. Соединим точку с точкой А.

Пример 2. Построим общую касательную АВ к двум заданным окружностям радиусов (рис. 18).

Сопряжения в инженерной графике на чертежах с примерами

  1. Находим середину С отрезка
  2. Из точки С, как из центра, радиусом проведем вспомогательную окружность.
  3. Из центра большей окружности проведем вторую вспомогательную окружность радиусом
  4. Пересечение двух вспомогательных окружностей определяет точку К, через которую проходит радиус идущий в точку касания В. 5. Для построения второй точки касания А проведем
  5. Соединим точки А и В отрезком прямой линии.

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Основные понятия о сопряжениях

При создании механизмов машин и при описаниях процессов взаимодействий поверхностей всегда возникает необходимость соединения двух или нескольких деталей или процессов. И очень часто приходится одну деталь (процесс) помещать внутрь другой. Основное содержание разработок по взаимозаменяемости в машиностроении и описании процессов взаимодействий связано именно с такими сопряжениями, поэтому приведем некоторые термины и их определения.

При соединении двух деталей объектов поверхности, которыми они соединяются, называют сопрягаемыми и иногда разделяют элементы детали с охватывающими и охватываемыми поверхностями.

Охватывающей называется элемент детали с внутренней сопрягаемой поверхностью (рис. 1.2). За деталями с такими поверхностями установился термин «отверстие».

Охватываемой называется деталь с наружной сопрягаемой поверхностью. За такими деталями установился термин «вал».

Как видно из определений и рис. 1.2, термины «отверстие» и «вал» применяются не обязательно к замкнутым поверхностям взаимодействии, но и к полуоткрытым, и относятся не ко всей детали или поверхности, а прежде всего к ее элементам, участвующим в сопряжении. Этот термин введен для удобства нормирования требований к размерам этих сопрягаемых поверхностей без различия формы детали в отношении несопрягаемых поверхностей.

I — детали с охватывающими поверхностями (отверстия),

2 — детали с охватываемыми поверхностями (валы).

Рис. 1.2. Охватывающие и охватываемые поверхности сопряжений

При соединении отверстий и валов, т.е. деталей с охватывающей и охватываемой поверхностями, они образуют сопряжение, чаще называемое посадкой. При этом в зависимости от размеров валов и отверстий (не забывайте, что термины «вал» и «отверстие» теперь и в дальнейшем мы будем употреблять только в отношении наружных и внутренних поверхностей) они могут иметь после сборки разные возможности в отношении смещения относительно друг друга. В некоторых случаях после соединения одна деталь может смещаться относительно другой на определенную величину, а в других случаях происходит сопротивление их взаимному смещению с разной степенью взаимодействия. Термины «отверстие» и «вал» могут применяться и для несопря- гаемых элементов или процессов. Этот методологический подход рассмотрим на примере машиностроения.

Посадка — характер соединения деталей, определяемый величиной получающихся в ней зазоров или натягов.

Зазор — разность размеров отверстия и вала, если размер отверстия больше размера вала.

Натяг — разность размеров вала и отверстия до сборки, если размер вала больше размера отверстия.

Добавление в определении натяга слов «до сборки» объясняется тем, что в результате сборки с натягом может происходить деформация сопрягаемых поверхностей.

В зависимости от свободы относительного перемещения сопрягаемых деталей или степени сопротивления их взаимному смещению разделяют посадки на три вида: посадки с зазором; посадки с натягом; переходные посадки.

Посадка с зазором (рис. 1.3, а) — посадка, при которой обеспечивается зазор в соединении. При графическом изображении в посадке с зазором поле допуска отверстия всегда располагается над полем допуска вала, т.е. размеры годного отверстия всегда больше размеров годного вала.

Читайте также  Самый безопасный вид транспорта статистика в мире

Посадки с зазором характеризуются (отличаются одна от другой) величиной наименьшего и наибольшего зазора. Наибольшим зазор окажется тогда, когда будут сопрягаться наибольший предельный размер отверстия и наименьший предельный размер вала. Наименьший зазор- при сопряжении наибольшего размера вала с наименьшим размером отверстия. В частном случае наименьший зазор может быть равен нулю.

Посадки с зазором используются в тех случаях, когда допускается относительное смещение сопрягаемых деталей.

Посадка с натягом (рис. 1.3, в) — посадка, при которой обеспечивается натяг в соединении, при графическом изображении в посадке с натягом поле допуска отверстия расположено под полем допуска вала, т.е. всегда размеры годного отверстия меньше размеров годного вала.

Посадки с натягом характеризуются (отличаются одна ол другой) величиной наименьшего и наибольшего натяга. Наибольшим натяг окажется тогда, когда будут сопрягаться наименьший размер отверстия с наибольшим размером вала. Наименьший натяг — при сопряжении наибольшего размера отверстия с наименьшим размером вала.

Посадки с натягом используются в тех случаях, когда необходимо передать крутящий момент в основном без дополнительного крепления только за счет упругих деформаций сопрягаемых деталей.

Переходная посадка (рис. 1.3, в)- посадка, при которой возможно получение как зазора, так и натяга. При графическом изображении поля допусков отверстия и вала перекрываются частично или полностью.

Переходные посадки характеризуются наибольшим натягом и наибольшим зазором. Если при изготовлении окажется, что размер отверстия соответствует наибольшему предельному размеру, а размер вала — наименьшему предельному размеру, то получится наибольший зазор в этом сопряжении. Если размер вала после изготовления соответствует наибольшему допустимому, а отверстие — наименьшему допустимому, то получится наибольший допустимый натяг.

Поэтому заранее, до изготовления, когда установлены допуски и возможные предельные размеры отверстия и вала, нельзя сказать, какая будет посадка — с зазором или с натягом.

Графические изображения посадок

Рис. 1.3. Графические изображения посадок: а) посадка с зазором; б) посадка с натягом; в) переходная посадка

При эксплуатации, когда необходимо иногда проводить разборку и сборку, используются переходные посадки взамен посадок с натягом. Обычно переходная посадка требует дополнительного закрепления сопрягаемых деталей, они имеют небольшие предельные зазоры и натяги и часто используются для обеспечения центрирования, т.е. обеспечения совпадения осей отверстия и вала. Для решения проблем сопряжения поверхностей в машиностроении используется система отверстия и система вала.

Посадки с одинаковыми зазорами или натягами можно получить при разном положении полей допусков отверстия и вала (см. рис. 1.1). Таких полей допусков может оказаться бесчисленное множество. Но это означает, что практически невозможно будет выпускать в продажу обрабатывающий инструмент для изготовления отверстий — сверла, зенкеры, развертки, другой инструмент, непосредственно формирующий размеры сопрягаемых поверхностей.

Поэтому в нормативных документах всех стран мира используется принципиальный подход к ограничению свободы в установлении полей допусков валов и отверстий относительно номинального значения. Это ограничение сформулировано в понятии «система отверстия» и «система вала». Принципиальный подход в этих системах заключается в том, что при образовании всех трех видов посадок вводится ограничение в расположении полей допусков, т.е. принимается постоянное положение одного из полей допусков (вала или отверстия), причем один из предельных размеров вала или отверстия должен совпадать с номинальным размером. Такие отверстия и валы получили название основных.

Основное отверстие — отверстие, нижнее отклонение которого равно нулю.

Основной вал — вал, верхнее отклонение которого равно нулю.

Таким образом, у основного отверстия с номинальным размером совпадает наименьший предельный размер, а у вала — наибольший предельный размер. Эти границы установлены не случайно. Дело в том, что при обработке вала его размер изменяется от большего к меньшему. Следовательно, можно прекращать обработку, когда размер будет равен наибольшему допустимому значению. И очень удобно, если этот первый из возможных размеров годной детали будет целым числом, равным номинальному. При обработке отверстия размер изменяется от меньшего к большему, и первый размер годной детали — это наименьший допустимый размер, он соответствует номинальному размеру.

Посадки в системе отверстия (рис. 1.4, а) — посадки, в которых различные зазоры и натяги получаются соединением различных, валов с основным отверстием.

Посадки в системе вала (рис. 1.4, б) — посадки, в которых различные зазоры и натяги получаются соединением различных отверстий с основным валом.

Здесь надо отметить, что предпочтение отдается системе отверстия, поскольку в этой системе меньше надо полей допусков для отверстия одного номинального размера, а изготовить отверстие и измерить его значительно труднее и дороже, чем изготовить и измерить вал такого размера с одинаковой точностью. Практически только для системы отверстия можно изготавливать готовый режущий инструмент для отверстия, так как в системе вала очень много полей допусков отверстий с различными предельными отклонениями при одном и том же номинальном размере. Систему вала обычно используют, исходя из некоторых конструктивных или технологических соображений, когда это экономически выгодно. Но случаи использования системы вала весьма ограничены.

Схемы графических представлений посадок

Рис. 1.4. Схемы графических представлений посадок: я) — в системе отверстия; б) — в системе вала

Сопряжения деталей машин и контактные напряжения

Передача сил между деталями в машинах происходит по сопряженным поверхностям (по площадкам контакта).

Сопряжения деталей машин условно можно разделить на первоначальный контакт передавае­мой мощности по поверхности, в точкеили по линии. В зависимости от характера взаимного перемещения контактирующих поверхностей под нагрузкой различают неподвижныеиподвижныесопряжения деталей.

Задачей расчета сопряженийявляется определение напряжений и деформаций. Они нужны для расчета деталей на прочность и определения жесткости (или податливости) соединений при решении задач динамики.

Расчет напряжений (деформаций) и перемещений в сопрягаемых деталях является объектом решения контактной задачи, а напряжения – контактными. В точной постановке решение контактной задачи связано со значительными трудностями, обусловленными сложной формой деталей, изменением размеров площадок контакта, под нагрузкой и др. Поэтому частные задачи для определенных форм деталей и условий нагружения решают приближенно.

Контактныминазывают напряжения и деформации, возникающие при взаимном нажатии двух соприкасающихся тел криволинейной формы. Теоретический контакт тел в этом случае может быть линейным (например, сжатие двух цилиндров с параллельными образующими) или точечным (например, сжатие двух шаров). Вследствие деформации в местах соприкосновения элементов конструкций передача давлений происходит по весьма малым площадкам. Решение вопроса о контактных напряжениях и деформациях впервые дано в работах немецкого физика Г. Герца в 1881–1882 гг.

Работоспособность деталей машин, находящихся под действием контактных напряжений, определяется сопротивлением усталости рабочих поверхностей этих деталей.

Рассмотрим два цилиндрических ролика 1 и 2 с неподвижными осями, касающихся по общей образующей и прижатых друг к другу силой Q(рис.2.1), причем ролик 1 ведущий и передает вращение ролику 2 за счет силы трения Fтp= =fQ, где f– коэффициент трения скольжения. В зоне соприкосновения роликов первоначальный линейный контакт по образующей в результате деформации превращается в контакт по узкой полоске и возникают известные из сопротивления материалов контактные напряжения, вычисляемые по формуле Герца. Площадка контакта переме­щается по поверхности роликов и в результате многократного деформирования микрообъемов материала в поверхностном слое возникают усталостные трещины. Под действием сил трения происходят пластические сдвиги поверхностных слоев материала, и образовавшиеся усталостные трещины наклоняются и вытягиваются в направлении сил трения(рис.2.1). Если вращение роликов происходит в условиях обильной смазки, то в трещины попадает масло, которое при прохождении зоны контакта выдавливаетсяиз трещин ведущего ролика 1 и заклиниваетсяв трещинах ведомого ролика 2, расширяя и углубляя их. Многократное повторение этого процесса приводит к отделению с поверхностного слоя материала в форме чешуек (отслаивание) или отделению частиц, приводящему к образованию ямок (выкрашивание), прежде всего на рабочей поверхности ведомого ролика.

Читайте также  Томагавк 9030 инструкция по применению с картинками

Рис. 2.1. Схема работы двух роликов при контактном напряжении

При прохождении зоны контакта элементы поверхностного слоя ведущего ролика 1 переходят из состояния сжатия (что на рис.2.1 обозначено тремя точками) в состояние растяжения (что обозначено тремя черточками), а у ведомого ролика 2, наоборот, – из состояния растяжения в состояние сжатия. Это приводит к упругому скольжениюрабочих поверхностей роликов, в результате чего ведомый ролик имеет меньшую окружную скорость, чем ведущий, т.е. υ1>υ2. Рабочая поверхность, по которой точка контакта перемещается с большей скоростью, называется опережающей, а сопряженная поверхность – отстающей.

Изложенное выше, а также экспериментальные данные и опыт эксплуатации машин позволяютсделать важный вывод, что сопротивление усталостному изнашиванию, а, следовательно, и нагрузочная способность у опережающих поверхностей выше, чем у отстающих. Это правило полностью справедливо и для рабочих поверхностей зубьев зубчатых передач.

Обратим внимание на то, что направление силы трения и скорости относительно зоны контакта у отстающей поверхности совпадают, а у опережающей противоположны.

Расчет на контактную усталостьрабочих поверхностей деталей ведется по допускаемымконтактным напряжениям.

21. Основные понятия и определения по допускам и посадкам. Допуски, посадки и технические измерения.

21. Основные понятия и определения по допускам и посадкам. Допуски, посадки и технические измерения. 21. Основные понятия и определения по допускам и посадкам. Допуски, посадки и технические измерения.

Поверхности, размеры, отклонения и допуски. Поверхности деталей бывают сопрягаемыми и несопрягаемыми, или свободными. При этом они могут быть цилиндрическими, плоскими, коническими, эвольвентными, сложными (шлицевые, винтовые) и др. Со-прягаемыми называют поверхности, по которым детали соединяются в сборочные единицы, а сборочные единицы — в механизмы. Несопрягаемыми, или свободными, — конструктивно необходимые поверхности, не предназначенные для соединения с поверхностями других деталей.

Внутренние цилиндрические поверхности, а также внутренние поверхности с парал-лельными плоскостями (отверстия в ступицах, шпоночные пазы и пр.) являются охватывающими (их условно называют отверстиями; диаметры отверстий обозначают буквой D). Наружные отверстия (цилиндрическая поверхность вала, боковые грани шпонок) являются охватываемыми (их условно называют валами и обозначают буквой d).

Размеры — это числовое значение линейной величины (диаметра, длины и т.д.), они делятся на номинальные, действительные и предельные. В машино и приборостроении все размеры в технической документации задают и указывают в миллиметрах.

Номинальный размер (D) — размер, относительно которого определяют предельные размеры и отсчитывают отклонения. Номинальные размеры являются основными размерами деталей или их соединений. Сопрягаемые поверхности имеют общий номинальный размер.

Действительный размер (Dr, dr) — размер, установленный измерением с допустимой погрешностью. Погрешностью измерения называется отклонение результата измерения от истинного значения измеряемой величины. Погрешность измерения, а следовательно, и выбор измерительных средств необходимо согласовывать с точностью, которая требуется для данного размера.

Предельные размеры — два предельно допустимых размера, между которыми должен находиться или которым может быть равен действи¬тельный размер. Больший из двух предельных размеров называют наибольшим предельным размером (Dmax, dmax), а меньший — наименьшим предельным размером (Dmin, dmin) Предельные размеры позво¬ляют оценивать точность обработки деталей.

Отклонение — это алгебраическая разность между действительным и соответствующим номинальными размерами. Отклонения отверстий обозначают буквой E, валов — e.

Действительное отклонение (Er, er) равно алгебраической разности действительного и номинального размеров: Er = Dr — D; er = dr — d.

Предельное отклонение равно алгебраической разности предельного и номинального размеров. Различают верхнее, нижнее и среднее отклонения. Верхнее (ES, es) равно алгебраической разности наибольшего предельного и номинального размеров: ES = Dmax — D; es = dmax — D.

Нижнее отклонение (EI, ei) равно алгебраической разности наименьшего предельного и номинального размеров: EI = Dmin — D; ei = Dmin — D.
Среднее отклонение (Em, em) равно полусумме верхнего и ниж¬него отклонений: Em = 0,5 (ES + EI), em = 0,5 (es + ei).
Пример. Определить предельные и средние отклонения для штифтов, у которых D = 20 мм, dmax = 20,01 мм и dmin = 19,989 мм.

Решение. Верхнее отклонение es = dmax — D = 20,01 — 20 = 0,01 мм; нижнее отклонение ei = dmin — D = 19,989 — 20 = -0,011 мм; среднее отклонение em = 0,5 (es + ei) = 0,5 + 0,01 (-0,011) = -0,0005мм.
Так размер штифта D = 20 мм с отклонениями на чертеже запишем следующим образом: 20 .
Действительные размеры годных деталей должны находиться в допустимых пределах, которые в каждом конкретном случае определяются предельными размерами или предельными отклонениями. Отсюда такое понятие как допуск размера.

Допуск (T — общее обозначение, TD — отверстия, Td — вала) равен разности наибольшего и наименьшего предельных размеров: TD = Dmax — Dmin; Td = dmax — dmin; TD = ES — EI; Td = es — ei.
Допуск всегда является положительной величиной независимо от способа его вычис-ления. На чертежах допуск указывают только через предельные отклонения, например: 10 .
Графическое изображение допусков и отклонений. Для наглядности допуски и от-клонения на деталях и соединениях изображают графичес¬ки (рис. 41).

Для графического построения полей допусков и посадок проводят горизонтальную линию 00, называемую нулевой. Нулевая — это линия, положение которой соответствует номинальному размеру и от которой откладываются предельные отклонения размеров. По-ложительные отклонения — вверх от нулевой линии, отрицательные — вниз.

Поле допуска — поле, ограниченное верхним и нижним отклонения¬ми. Оно опре-деляется величиной допуска и его положением относитель¬но номинального размера. При графическом изображении поля допусков показывают зоны, которые ограничены двумя ли-ниями, проведенными на расстояниях, соответствующих верхнему и нижнему отклоне¬нию.
На схемах указывают номинальный D и предельные (Dmax, Dmin, dmax, dmin) размеры, предельные отклонения (ES, EI, es, ei) поля допусков и другие параметры.

Понятия о посадках и допуске посадки. Если у соединяемых между собой деталей размер отверстия больше размера вала, то в соединении будет зазор (S). Если же размер ва-ла больше размера отверстия, то в соединении будет натяг (N). Зазором называется по-ложительная разность между размерами отверстия и вала S = D — d (рис. 42, а). а натягом — положительная разность между размером вала и отверстия N = d — D (рис. 42, б).

В машинах и приборах требуются посадки с различными зазорами и натягами. В тех случаях, когда одна деталь должна перемещаться относительно другой без качки, следует иметь очень малый зазор: для того чтобы одна деталь могла свободно вращаться в другой (например, вал в отверстии), зазор должен быть больше. Если соединенные вал и втулка представляют собой как бы одно целое, они соединены с натягом и не могут перемещаться относительно друг друга.
Посадки подразделяют на три вида: подвижные, обеспечивающие зазор в соединении: неподвижные (прессовые), обеспечивающие натяг в соединении; переходные, ко-торые наз¬ваны так потому, что до сборки вала и втулки нельзя сказать, что будет в соединении — зазор или натяг, так как заданные отклонения на вал и отверстие перекрывают друг друга.

В зависимости от использованного допуска у той и другой детали при переходной посадке может оказаться, что размер вала больше размера отверстия или размер отверстия больше размера вала.

Для оценки точности соединений (посадок) пользуются понятием допуска посадки, под которым понимается разность между наибольшим и наименьшим зазорами (в посадках с зазором) или наибольшим и наименьшим натягами (в посадках с натягом). В переходных посадках допуск посадки равен разности между наибольшим и наименьшим натягами или сумме наибольшего натяга и наибольшего зазора. Допуск посадки равен также сумме допусков отверстия и вала.

Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: